ﻻ يوجد ملخص باللغة العربية
Studies of sparse representation of deterministic signals have been well developed. Amongst there exists one called adaptive Fourier decomposition (AFD) established through adaptive selections of the parameters defining a Takenaka-Malmquist system in one-complex variable. The AFD type algorithms give rise to sparse representations of signals of finite energy. The multivariate generalization of AFD is one called pre-orthogonal AFD (POAFD), the latter being established with the context Hilbert space possessing a dictionary. The purpose of the present study is to generalize both AFD and POAFD to random signals. We work on two types of random signals. One is those expressible as the sum of a deterministic signal with an error term such as a white noise; and the other is, in general, as mixture of several classes of random signals obeying certain distributive law. In the first part of the paper we develop an AFD type sparse representation for one-dimensional random signals by making use analysis of one complex variable. In the second part, without complex analysis, we treat multivariate random signals in the context of stochastic Hilbert space with a dictionary. Like in the deterministic signal case the established random sparse representations are powerful tools in practical signal analysis.
A Herglotz function is a holomorphic map from the open complex unit disk into the closed complex right halfplane. A classical Herglotz function has an integral representation against a positive measure on the unit circle. We prove a free analytic ana
The integer points (sites) of the real line are marked by the positions of a standard random walk. We say that the set of marked sites is weakly, moderately or strongly sparse depending on whether the jumps of the standard random walk are supported b
We study the spectrum of a random multigraph with a degree sequence ${bf D}_n=(D_i)_{i=1}^n$ and average degree $1 ll omega_n ll n$, generated by the configuration model, and also the spectrum of the analogous random simple graph. We show that, when
A random walk in a sparse random environment is a model introduced by Matzavinos et al. [Electron. J. Probab. 21, paper no. 72: 2016] as a generalization of both a simple symmetric random walk and a classical random walk in a random environment. A ra
We study the statistics of the largest eigenvalues of $p times p$ sample covariance matrices $Sigma_{p,n} = M_{p,n}M_{p,n}^{*}$ when the entries of the $p times n$ matrix $M_{p,n}$ are sparse and have a distribution with tail $t^{-alpha}$, $alpha>0$.