ترغب بنشر مسار تعليمي؟ اضغط هنا

Extreme eigenvalues of sparse, heavy tailed random matrices

145   0   0.0 ( 0 )
 نشر من قبل Si Tang
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the statistics of the largest eigenvalues of $p times p$ sample covariance matrices $Sigma_{p,n} = M_{p,n}M_{p,n}^{*}$ when the entries of the $p times n$ matrix $M_{p,n}$ are sparse and have a distribution with tail $t^{-alpha}$, $alpha>0$. On average the number of nonzero entries of $M_{p,n}$ is of order $n^{mu+1}$, $0 leq mu leq 1$. We prove that in the large $n$ limit, the largest eigenvalues are Poissonian if $alpha<2(1+mu^{{-1}})$ and converge to a constant in the case $alpha>2(1+mu^{{-1}})$. We also extend the results of Benaych-Georges and Peche [7] in the Hermitian case, removing restrictions on the number of nonzero entries of the matrix.



قيم البحث

اقرأ أيضاً

We analyze the largest eigenvalue statistics of m-dependent heavy-tailed Wigner matrices as well as the associated sample covariance matrices having entry-wise regularly varying tail distributions with parameter $0<alpha<4$. Our analysis extends resu lts in the previous literature for the corresponding random matrices with independent entries above the diagonal, by allowing for m-dependence between the entries of a given matrix. We prove that the limiting point process of extreme eigenvalues is a Poisson cluster process.
Consider a $p$-dimensional population ${mathbf x} inmathbb{R}^p$ with iid coordinates in the domain of attraction of a stable distribution with index $alphain (0,2)$. Since the variance of ${mathbf x}$ is infinite, the sample covariance matrix ${math bf S}_n=n^{-1}sum_{i=1}^n {{mathbf x}_i}{mathbf x}_i$ based on a sample ${mathbf x}_1,ldots,{mathbf x}_n$ from the population is not well behaved and it is of interest to use instead the sample correlation matrix ${mathbf R}_n= {operatorname{diag}({mathbf S}_n)}^{-1/2}, {mathbf S}_n {operatorname{diag}({mathbf S}_n)}^{-1/2}$. This paper finds the limiting distributions of the eigenvalues of ${mathbf R}_n$ when both the dimension $p$ and the sample size $n$ grow to infinity such that $p/nto gamma in (0,infty)$. The family of limiting distributions ${H_{alpha,gamma}}$ is new and depends on the two parameters $alpha$ and $gamma$. The moments of $H_{alpha,gamma}$ are fully identified as sum of two contributions: the first from the classical Marv{c}enko-Pastur law and a second due to heavy tails. Moreover, the family ${H_{alpha,gamma}}$ has continuous extensions at the boundaries $alpha=2$ and $alpha=0$ leading to the Marv{c}enko-Pastur law and a modified Poisson distribution, respectively. Our proofs use the method of moments, the path-shortening algorithm developed in [18] and some novel graph counting combinatorics. As a consequence, the moments of $H_{alpha,gamma}$ are expressed in terms of combinatorial objects such as Stirling numbers of the second kind. A simulation study on these limiting distributions $H_{alpha,gamma}$ is also provided for comparison with the Marv{c}enko-Pastur law.
118 - Elizabeth Meckes 2021
This is a brief survey of classical and recent results about the typical behavior of eigenvalues of large random matrices, written for mathematicians and others who study and use matrices but may not be accustomed to thinking about randomness.
140 - Paul Bourgade 2018
This paper proves universality of the distribution of the smallest and largest gaps between eigenvalues of generalized Wigner matrices, under some smoothness assumption for the density of the entries. The proof relies on the Erd{H o}s-Schlein-Yau d ynamic approach. We exhibit a new observable that satisfies a stochastic advection equation and reduces local relaxation of the Dyson Brownian motion to a maximum principle. This observable also provides a simple and unified proof of universality in the bulk and at the edge, which is quantitative. To illustrate this, we give the first explicit rate of convergence to the Tracy-Widom distribution for generalized Wigner matrices.
We consider the real eigenvalues of an $(N times N)$ real elliptic Ginibre matrix whose entries are correlated through a non-Hermiticity parameter $tau_Nin [0,1]$. In the almost-Hermitian regime where $1-tau_N=Theta(N^{-1})$, we obtain the large-$N$ expansion of the mean and the variance of the number of the real eigenvalues. Furthermore, we derive the limiting empirical distributions of the real eigenvalues, which interpolate the Wigner semicircle law and the uniform distribution, the restriction of the elliptic law on the real axis. Our proofs are based on the skew-orthogonal polynomial representation of the correlation kernel due to Forrester and Nagao.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا