ﻻ يوجد ملخص باللغة العربية
We study the statistics of the largest eigenvalues of $p times p$ sample covariance matrices $Sigma_{p,n} = M_{p,n}M_{p,n}^{*}$ when the entries of the $p times n$ matrix $M_{p,n}$ are sparse and have a distribution with tail $t^{-alpha}$, $alpha>0$. On average the number of nonzero entries of $M_{p,n}$ is of order $n^{mu+1}$, $0 leq mu leq 1$. We prove that in the large $n$ limit, the largest eigenvalues are Poissonian if $alpha<2(1+mu^{{-1}})$ and converge to a constant in the case $alpha>2(1+mu^{{-1}})$. We also extend the results of Benaych-Georges and Peche [7] in the Hermitian case, removing restrictions on the number of nonzero entries of the matrix.
We analyze the largest eigenvalue statistics of m-dependent heavy-tailed Wigner matrices as well as the associated sample covariance matrices having entry-wise regularly varying tail distributions with parameter $0<alpha<4$. Our analysis extends resu
Consider a $p$-dimensional population ${mathbf x} inmathbb{R}^p$ with iid coordinates in the domain of attraction of a stable distribution with index $alphain (0,2)$. Since the variance of ${mathbf x}$ is infinite, the sample covariance matrix ${math
This is a brief survey of classical and recent results about the typical behavior of eigenvalues of large random matrices, written for mathematicians and others who study and use matrices but may not be accustomed to thinking about randomness.
This paper proves universality of the distribution of the smallest and largest gaps between eigenvalues of generalized Wigner matrices, under some smoothness assumption for the density of the entries. The proof relies on the Erd{H o}s-Schlein-Yau d
We consider the real eigenvalues of an $(N times N)$ real elliptic Ginibre matrix whose entries are correlated through a non-Hermiticity parameter $tau_Nin [0,1]$. In the almost-Hermitian regime where $1-tau_N=Theta(N^{-1})$, we obtain the large-$N$