ﻻ يوجد ملخص باللغة العربية
Isospin breaking in the Kl4 form factors induced by the difference between charged and neutral pion masses is studied. Starting from suitably subtracted dispersion representations, the form factors are constructed in an iterative way up to two loops in the low-energy expansion by implementing analyticity, crossing, and unitarity due to two-meson intermediate states. Analytical expressions for the phases of the two-loop form factors of the Kpm -> pi^+ pi^- e^pm nu_e channel are given, allowing one to connect the difference of form-factor phase shifts measured experimentally (out of the isospin limit) and the difference of S- and P-wave pi-pi phase shifts studied theoretically (in the isospin limit). The isospin-breaking correction consists of the sum of a universal part, involving only pi-pi rescattering, and a process-dependent contribution, involving the form factors in the coupled channels. The dependence on the two S-wave scattering lengths a_0^0 and a_0^2 in the isospin limit is worked out in a general way, in contrast to previous analyses based on one-loop chiral perturbation theory. The latter is used only to assess the subtraction constants involved in the dispersive approach. The two-loop universal and process-dependent contributions are estimated and cancel partially to yield an isospin-breaking correction close to the one-loop case. The recent results on the phases of K^pm -> pi^+ pi^- e^pm nu_e form factors obtained by the NA48/2 collaboration at the CERN SPS are reanalysed including this isospin-breaking correction to extract values for the scattering lengths a_0^0 and a_0^2, as well as for low-energy constants and order parameters of two-flavour ChPT.
Data on Ke4 decays allow one to extract experimental information on the elastic pi pi scattering amplitude near threshold, and to confront the outcome of the analysis with predictions made in the framework of QCD. These predictions concern an isospin
For direct CP-violation in $Ktopipi$ decays, the usual isospin-breaking effects at the percent level are amplified by the dynamics behind the $Delta I=1/2$ rule and conventionally encoded in $Omega_{rm IB}$ parameters. The updated prediction $Omega_{
The axial-vector form factors and axial-vector constants of the baryon decuplet are investigated within a pion mean-field approach, which is also known as the chiral quark-soliton model. Given an axial-vector current with a specified flavor, there ar
One of the open issues in evaluations of the contribution from hadronic light-by-light scattering to the anomalous magnetic moment of the muon $(g-2)_mu$ concerns the role of heavier scalar, axial-vector, and tensor-meson intermediate states. The cou
We consider the evaluation of the $etapi$ isospin-violating vector and scalar form factors relying on a systematic application of analyticity and unitarity, combined with chiral expansion results. It is argued that the usual analyticity properties do