ترغب بنشر مسار تعليمي؟ اضغط هنا

Anisotropic KPZ growth in 2+1 dimensions: fluctuations and covariance structure

44   0   0.0 ( 0 )
 نشر من قبل Patrik L. Ferrari
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Patrik L. Ferrari




اسأل ChatGPT حول البحث

In [arXiv:0804.3035] we studied an interacting particle system which can be also interpreted as a stochastic growth model. This model belongs to the anisotropic KPZ class in 2+1 dimensions. In this paper we present the results that are relevant from the perspective of stochastic growth models, in particular: (a) the surface fluctuations are asymptotically Gaussian on a sqrt(ln(t)) scale and (b) the correlation structure of the surface is asymptotically given by the massless field.

قيم البحث

اقرأ أيضاً

We study directed rigidity percolation (equivalent to directed bootstrap percolation) on three different lattices: square, triangular, and augmented triangular. The first two of these display a first-order transition at p=1, while the augmented trian gular lattice shows a continuous transition at a non-trivial p_c. On the augmented triangular lattice we find, by extensive numerical simulation, that the directed rigidity percolation transition belongs to the same universality class as directed percolation. The same conclusion is reached by studying its surface critical behavior, i.e. the spreading of rigidity from finite clusters close to a non-rigid wall. Near the discontinuous transition at p=1 on the triangular lattice, we are able to calculate the finite-size behavior of the density of rigid sites analytically. Our results are confirmed by numerical simulation.
We propose a generalization of the Ornstein-Uhlenbeck process in 1+1 dimensions which is the product of a temporal Ornstein-Uhlenbeck process with a spatial one and has exponentially decaying autocorrelation. The generalized Langevin equation of the process, the corresponding Fokker-Planck equation, and a discrete integral algorithm for numerical simulation is given. The process is an alternative to a recently proposed spatiotemporal correlated model process [J. Garcia-Ojalvo et al., Phys. Rev. A 46, 4670 (1992)] for which we calculate explicitely the hitherto not known autocorrelation function in real space.
We derive a selection rule among the $(1+1)$-dimensional SU(2) Wess-Zumino-Witten theories, based on the global anomaly of the discrete $mathbb{Z}_2$ symmetry found by Gepner and Witten. In the presence of both the SU(2) and $mathbb{Z}_2$ symmetries, a renormalization-group flow is possible between level-$k$ and level-$k$ Wess-Zumino-Witten theories only if $kequiv k mod{2}$. This classifies the Lorentz-invariant, SU(2)-symmetric critical behavior into two symmetry-protected categories corresponding to even and odd levels,restricting possible gapless critical behavior of translation-invariant quantum spin chains.
The percolation behaviour during the deposit formation, when the spanning cluster was formed in the substrate plane, was studied. Two competitive or mixed models of surface layer formation were considered in (1+1)-dimensional geometry. These models a re based on the combination of ballistic deposition (BD) and random deposition (RD) models or BD and Family deposition (FD) models. Numerically we find, that for pure RD, FD or BD models the mean height of the percolation deposit $bar h$ grows with the substrate length $L$ according to the generalized logarithmic law $bar hpropto (ln (L))^gamma$, where $gamma=1.0$ (RD), $gamma=0.88pm 0.020$ (FD) and $gamma=1.52pm 0.020$ (BD). For BD model, the scaling law between deposit density $p$ and its mean height $bar h$ at the point of percolation of type $p-p_infty propto bar h^{-1/ u_h}$ are observed, where $ u_h =1.74pm0.02$ is a scaling coefficient. For competitive models the crossover, %in $h$ versus $L$ corresponding to the RD or FD -like behaviour at small $L$ and the BD-like behaviour at large $L$ are observed.
The structure and energetics of superflow around quantized vortices, and the motion inherited by these vortices from this superflow, are explored in the general setting of the superfluidity of helium-four in arbitrary dimensions. The vortices may be idealized as objects of co-dimension two, such as one-dimensional loops and two-dimensional closed surfaces, respectively, in the cases of three- and four-dimensional superfluidity. By using the analogy between vorticial superflow and Ampere-Maxwell magnetostatics, the equilibrium superflow containing any specified collection of vortices is constructed. The energy of the superflow is found to take on a simple form for vortices that are smooth and asymptotically large, compared with the vortex core size. The motion of vortices is analyzed in general, as well as for the special cases of hyper-spherical and weakly distorted hyper-planar vortices. In all dimensions, vortex motion reflects vortex geometry. In dimension four and higher, this includes not only extrinsic but also intrinsic aspects of the vortex shape, which enter via the first and second fundamental forms of classical geometry. For hyper-spherical vortices, which generalize the vortex rings of three dimensional superfluidity, the energy-momentum relation is determined. Simple scaling arguments recover the essential features of these results, up to numerical and logarithmic factors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا