ترغب بنشر مسار تعليمي؟ اضغط هنا

Directed rigidity and bootstrap percolation in (1+1) dimensions

105   0   0.0 ( 0 )
 نشر من قبل Cristian F. Moukarzel
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study directed rigidity percolation (equivalent to directed bootstrap percolation) on three different lattices: square, triangular, and augmented triangular. The first two of these display a first-order transition at p=1, while the augmented triangular lattice shows a continuous transition at a non-trivial p_c. On the augmented triangular lattice we find, by extensive numerical simulation, that the directed rigidity percolation transition belongs to the same universality class as directed percolation. The same conclusion is reached by studying its surface critical behavior, i.e. the spreading of rigidity from finite clusters close to a non-rigid wall. Near the discontinuous transition at p=1 on the triangular lattice, we are able to calculate the finite-size behavior of the density of rigid sites analytically. Our results are confirmed by numerical simulation.



قيم البحث

اقرأ أيضاً

The percolation behaviour during the deposit formation, when the spanning cluster was formed in the substrate plane, was studied. Two competitive or mixed models of surface layer formation were considered in (1+1)-dimensional geometry. These models a re based on the combination of ballistic deposition (BD) and random deposition (RD) models or BD and Family deposition (FD) models. Numerically we find, that for pure RD, FD or BD models the mean height of the percolation deposit $bar h$ grows with the substrate length $L$ according to the generalized logarithmic law $bar hpropto (ln (L))^gamma$, where $gamma=1.0$ (RD), $gamma=0.88pm 0.020$ (FD) and $gamma=1.52pm 0.020$ (BD). For BD model, the scaling law between deposit density $p$ and its mean height $bar h$ at the point of percolation of type $p-p_infty propto bar h^{-1/ u_h}$ are observed, where $ u_h =1.74pm0.02$ is a scaling coefficient. For competitive models the crossover, %in $h$ versus $L$ corresponding to the RD or FD -like behaviour at small $L$ and the BD-like behaviour at large $L$ are observed.
174 - Deepak Dhar 2017
These lectures provide an introduction to the directed percolation and directed animals problems, from a physicists point of view. The probabilistic cellular automaton formulation of directed percolation is introduced. The planar duality of the diode -resistor-insulator percolation problem in two dimensions, and relation of the directed percolation to undirected first passage percolation problem are described. Equivalence of the $d$-dimensional directed animals problem to $(d-1)$-dimensional Yang-Lee edge-singularity problem is established. Self-organized critical formulation of the percolation problem, which does not involve any fine-tuning of coupling constants to get critical behavior is briefly discussed.
76 - Victor Dotsenko 2016
The asymptotic analytic expression for the two-time free energy distribution function in (1+1) random directed polymers is derived in the limit when the two times are close to each other
133 - Victor Dotsenko 2016
The joint statistical properties of two free energies computed at two different temperatures in {it the same sample} of $(1+1)$ directed polymers is studied in terms of the replica technique. The scaling dependence of the reduced free energies differ ence ${cal F} = F(T_{1})/T_{1} - F(T_{2})/T_{2}$ on the two temperatures $T_{1}$ and $T_{2}$ is derived. In particular, it is shown that if the two temperatures $T_{1} , < , T_{2}$ are close to each other the typical value of the fluctuating part of the reduced free energies difference ${cal F}$ is proportional to $(1 - T_{1}/T_{2})^{1/3}$. It is also shown that the left tail asymptotics of this free energy difference probability distribution function coincides with the corresponding tail of the TW distribution.
We derive a selection rule among the $(1+1)$-dimensional SU(2) Wess-Zumino-Witten theories, based on the global anomaly of the discrete $mathbb{Z}_2$ symmetry found by Gepner and Witten. In the presence of both the SU(2) and $mathbb{Z}_2$ symmetries, a renormalization-group flow is possible between level-$k$ and level-$k$ Wess-Zumino-Witten theories only if $kequiv k mod{2}$. This classifies the Lorentz-invariant, SU(2)-symmetric critical behavior into two symmetry-protected categories corresponding to even and odd levels,restricting possible gapless critical behavior of translation-invariant quantum spin chains.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا