ترغب بنشر مسار تعليمي؟ اضغط هنا

Symmetry protection of critical phases and global anomaly in $1+1$ dimensions

168   0   0.0 ( 0 )
 نشر من قبل Shunsuke Furuya
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We derive a selection rule among the $(1+1)$-dimensional SU(2) Wess-Zumino-Witten theories, based on the global anomaly of the discrete $mathbb{Z}_2$ symmetry found by Gepner and Witten. In the presence of both the SU(2) and $mathbb{Z}_2$ symmetries, a renormalization-group flow is possible between level-$k$ and level-$k$ Wess-Zumino-Witten theories only if $kequiv k mod{2}$. This classifies the Lorentz-invariant, SU(2)-symmetric critical behavior into two symmetry-protected categories corresponding to even and odd levels,restricting possible gapless critical behavior of translation-invariant quantum spin chains.



قيم البحث

اقرأ أيضاً

We study directed rigidity percolation (equivalent to directed bootstrap percolation) on three different lattices: square, triangular, and augmented triangular. The first two of these display a first-order transition at p=1, while the augmented trian gular lattice shows a continuous transition at a non-trivial p_c. On the augmented triangular lattice we find, by extensive numerical simulation, that the directed rigidity percolation transition belongs to the same universality class as directed percolation. The same conclusion is reached by studying its surface critical behavior, i.e. the spreading of rigidity from finite clusters close to a non-rigid wall. Near the discontinuous transition at p=1 on the triangular lattice, we are able to calculate the finite-size behavior of the density of rigid sites analytically. Our results are confirmed by numerical simulation.
We propose a generalization of the Ornstein-Uhlenbeck process in 1+1 dimensions which is the product of a temporal Ornstein-Uhlenbeck process with a spatial one and has exponentially decaying autocorrelation. The generalized Langevin equation of the process, the corresponding Fokker-Planck equation, and a discrete integral algorithm for numerical simulation is given. The process is an alternative to a recently proposed spatiotemporal correlated model process [J. Garcia-Ojalvo et al., Phys. Rev. A 46, 4670 (1992)] for which we calculate explicitely the hitherto not known autocorrelation function in real space.
In the last few years it was realized that every fermionic theory in 1+1 dimensions is a generalized Jordan-Wigner transform of a bosonic theory with a non-anomalous $mathbb{Z}_2$ symmetry. In this note we determine how the boundary states are mapped under this correspondence. We also interpret this mapping as the fusion of the original boundary with the fermionization interface.
We derive the dominant contribution to the large-distance decay of correlation functions for a spin chain model that exhibits both Haldane and Neel phases in its ground state phase diagram. The analytic results are obtained by means of an approximate mapping between a spin-1 anisotropic Hamiltonian onto a fermionic model of noninteracting Bogolioubov quasiparticles related in turn to the XY spin-1/2 chain in a transverse field. This approach allows us to express the spin-1 string operators in terms of fermionic operators so that the dominant contribution to the string correlators at large distances can be computed using the technique of Toeplitz determinants. As expected, we find long-range string order both in the longitudinal and in the transverse channel in the Haldane phase, while in the Neel phase only the longitudinal order survives. In this way, the long-range string order can be explicitly related to the components of the magnetization of the XY model. Moreover, apart from the critical line, where the decay is algebraic, we find that in the gapped phases the decay is governed by an exponential tail multiplied by algebraic factors. As regards the usual two points correlation functions, we show that the longitudinal one behaves in a dual fashion with respect to the transverse string correlator, namely both the asymptotic values and the decay laws exchange when the transition line is crossed. For the transverse spin-spin correlator, we find a finite characteristic length which is an unexpected feature at the critical point. We also comment briefly the entanglement features of the original system versus those of the effective model. The goodness of the approximation and the analytical predictions are checked versus density-matrix renormalization group calculations.
128 - P. Strack , P. Jakubczyk 2009
We revisit the two-dimensional quantum Ising model by computing renormalization group flows close to its quantum critical point. The low but finite temperature regime in the vicinity of the quantum critical point is squashed between two distinct non- Gaussian fixed points: the classical fixed point dominated by thermal fluctuations and the quantum critical fixed point dominated by zero-point quantum fluctuations. Truncating an exact flow equation for the effective action we derive a set of renormalization group equations and analyze how the interplay of quantum and thermal fluctuations, both non-Gaussian in nature, influences the shape of the phase boundary and the region in the phase diagram where critical fluctuations occur. The solution of the flow equations makes this interplay transparent: we detect finite temperature crossovers by computing critical exponents and we confirm that the power law describing the finite temperature phase boundary as a function of control parameter is given by the correlation length exponent at zero temperature as predicted in an epsilon-expansion with epsilon=1 by Sachdev, Phys. Rev. B 55, 142 (1997).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا