ترغب بنشر مسار تعليمي؟ اضغط هنا

Broadband circularly polarized thermal radiation from magnetic Weyl semimetals

185   0   0.0 ( 0 )
 نشر من قبل Yifan Wang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We numerically demonstrate that a planar slab made of magnetic Weyl semimetal (a class of topological materials) can emit high-purity circularly polarized (CP) thermal radiation over a broad mid- and long-wave infrared wavelength range for a significant portion of its emission solid angle. This effect fundamentally arises from the strong infrared gyrotropy or nonreciprocity of these materials which primarily depends on the momentum separation between Weyl nodes in the band structure. We clarify the dependence of this effect on the underlying physical parameters and highlight that the spectral bandwidth of CP thermal emission increases with increasing momentum separation between the Weyl nodes. We also demonstrate using recently developed thermal discrete dipole approximation (TDDA) computational method that finite-size bodies of magnetic Weyl semimetals can emit spectrally broadband CP thermal light, albeit over smaller portion of the emission solid angle compared to the planar slabs. Our work identifies unique fundamental and technological prospects of magnetic Weyl semimetals for engineering thermal radiation and designing efficient CP light sources.

قيم البحث

اقرأ أيضاً

123 - Ofer Kfir 2017
This work demonstrates nanoscale magnetic imaging using bright circularly polarized high-harmonic radiation. We utilize the magneto-optical contrast of worm-like magnetic domains in a Co/Pd multilayer structure, obtaining quantitative amplitude and p hase maps by lensless imaging. A diffraction-limited spatial resolution of 49 nm is achieved with iterative phase reconstruction enhanced by a holographic mask. Harnessing the unique coherence of high harmonics, this approach will facilitate quantitative, element-specific and spatially-resolved studies of ultrafast magnetization dynamics, advancing both fundamental and applied aspects of nanoscale magnetism.
89 - Gaomin Tang , Jun Chen , 2020
Due to the large anomalous Hall effect, magnetic Weyl semimetals can support nonreciprocal surface plasmon polariton modes in the absence of an external magnetic field. This implies that magnetic Weyl semimetals can find novel application in (thermal ) photonics. In this work, we consider the near-field radiative heat transfer between two magnetic Weyl semimetal slabs and show that the heat transfer can be controlled with a relative rotation of the parallel slabs. Thanks to the intrinsic nonreciprocity of the surface modes, this so-called twisting method does not require surface structuring like periodic gratings. The twist-induced control of heat transfer is due to the mismatch of the surface modes from the two slabs with a relative rotation.
114 - Jun Wu , Feng Wu , Tiancheng Zhao 2021
Kirchhoff s law is one of the most fundamental law in thermal radiation. The violation of traditional Kirchhoff s law provides opportunities for higher energy conversion efficiency. Various micro-structures have been proposed to realize single-band n onreciprocal thermal emitters. However, dual-band nonreciprocal thermal emitters remain barely investigated. In this paper, we introduce magneto-optical material into a cascading one-dimensional (1-D) magnetophotonic crystal (MPC) heterostructure composed of two 1-D MPCs and a metal layer. Assisted by the nonreciprocity of the magneto-optical material and the coupling effect of two optical Tamm states (OTSs), a dual-band nonreciprocal lithography-free thermal emitter is achieved. The emitter exhibits strong dual-band nonreciprocal radiation at the wavelengths of 15.337 um and 15.731 um when the external magnetic field is 3 T and the angle of incidence is 56 degree. Besides, the magnetic field distribution is also calculated to confirm that the dual-band nonreciprocal radiation originates from the coupling effect between two OTSs. Our work may pave the way for constructing dual-band and multi-band nonreciprocal thermal emitters.
Recent experimental breakthrough in magnetic Weyl semimetals have inspired exploration on the novel effects of various magnetic structures in these materials. Here we focus on a domain wall structure which connects two uniform domains with different magnetization directions. We study the topological superconducting state in presence of an s-wave superconducting pairing potential. By tuning the chemical potential, we can reach a topological state, where a chiral Majorana mode or zero-energy Majorana bound state is localized at the edges of the domain walls. This property allows a convenient braiding operation of Majorana modes by controlling the dynamics of domain walls.
High-harmonic generation in two-colour ($omega-2omega$) counter-rotating circularly polarised laser fields opens the path to generate isolated attosecond pulses and attosecond pulse trains with controlled ellipticity. The generated harmonics have alt ernating helicity, and the ellipticity of the generated attosecond pulse depends sensitively on the relative intensities of two adjacent, counter-rotating harmonic lines. For the $s$-type ground state, such as in Helium, the successive harmonics have nearly equal amplitude, yielding isolated attosecond pulses and attosecond pulse trains with linear polarisation, rotated by 120$^{{circ}}$ from pulse to pulse. In this work, we suggest a solution to overcome the limitation associated with the $s$-type ground state. It is based on modifying the three propensity rules associated with the three steps of the harmonic generation process: ionisation, propagation, and recombination. We control the first step by seeding high harmonic generation with XUV light tuned well below the ionisation threshold, which generates virtual excitations with the angular momentum co-rotating with the $omega$-field. We control the propagation step by increasing the intensity of the $omega$-field relative to the $2omega$-field, further enhancing the chance of the $omega$-field being absorbed versus the $2omega$-field, thus favouring the emission co-rotating with the seed and the $omega-$field. We demonstrate our proposed control scheme using Helium atom as a target and solving time-dependent Schr{o}dinger equation in two and three-dimensions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا