ﻻ يوجد ملخص باللغة العربية
A many-flavor electron gas (MFEG) in a semiconductor with a valley degeneracy ranging between 6 and 24 was analyzed using diffusion Monte Carlo (DMC) calculations. The DMC results compare well with an analytic expression derived by one of us [Phys. Rev. B 78, 035111 (2008)] for the total energy to within 1% over an order of magnitude range of density, which increases with valley degeneracy. For Bi2Te3 (six-fold valley degeneracy) the applicable charge carrier densities are between 7*10^19cm^{-3} and 2*10^20cm^{-3}. DMC calculations distinguished between an exact and a useful approximate expression for the 24-fold degenerate MFEG polarizability for wave numbers 2p_F<q<7p_F. The analytical result for the MFEG is generalized to inhomogeneous systems by means of a gradient correction, the validity range of this approach is obtained. Employed within a density functional theory calculation this approximation compares well with DMC results for a quantum dot.
We present density-functional theory (DFT) and quantum Monte Carlo (QMC) calculations designed to resolve experimental and theoretical controversies over the optical properties of H-terminated C nanoparticles (diamondoids). The QMC results follow the
We report diffusion quantum Monte Carlo calculations of three-dimensional Wigner crystals in the density range r_s=100-150. We have tested different types of orbital for use in the approximate wave functions but none improve upon the simple Gaussian
We probe the superconducting gap in the zero temperature ground state of an attractively interacting spin-imbalanced two-dimensional Fermi gas with Diffusion Monte Carlo. A condensate fraction at nonzero pair momentum evidences a spatially non-unifor
The superconducting (SC) and charge-density-wave (CDW) susceptibilities of the two dimensional Holstein model are computed using determinant quantum Monte Carlo (DQMC), and compared with results computed using the Migdal-Eliashberg (ME) approach. We
The honeycomb antiferromagnet under a triaxial strain is studied using the quantum Monte Carlo simulation. The strain dimerizes the exchange couplings near the corners, thus destructs the antiferromagnetic order therein. The antiferromagnetic region