ﻻ يوجد ملخص باللغة العربية
We report diffusion quantum Monte Carlo calculations of three-dimensional Wigner crystals in the density range r_s=100-150. We have tested different types of orbital for use in the approximate wave functions but none improve upon the simple Gaussian form. The Gaussian exponents are optimized by directly minimizing the diffusion quantum Monte Carlo energy. We have carefully investigated and sought to minimize the potential biases in our Monte Carlo results. We conclude that the uniform electron gas undergoes a transition from a ferromagnetic fluid to a body-centered-cubic Wigner crystal at r_s=106+/-1. The diffusion quantum Monte Carlo results are compared with those from Hartree-Fock and Hartree theory in order to understand the role played by exchange and correlation in Wigner crystals. We also study floating Wigner crystals and give results for their pair-correlation functions.
We report large scale determinant Quantum Monte Carlo calculations of the effective bandwidth, momentum distribution, and magnetic correlations of the square lattice fermion Hubbard Hamiltonian at half-filling. The sharp Fermi surface of the non-inte
We probe the superconducting gap in the zero temperature ground state of an attractively interacting spin-imbalanced two-dimensional Fermi gas with Diffusion Monte Carlo. A condensate fraction at nonzero pair momentum evidences a spatially non-unifor
According to Landaus Fermi liquid theory, the main properties of the quasiparticle excitations of an electron gas are embodied in the effective mass $m^*$, which determines the energy of a single quasiparticle, and the Landau interaction function, wh
A many-flavor electron gas (MFEG) in a semiconductor with a valley degeneracy ranging between 6 and 24 was analyzed using diffusion Monte Carlo (DMC) calculations. The DMC results compare well with an analytic expression derived by one of us [Phys. R
We have performed numerical studies of the Hubbard-Holstein model in two dimensions using determinant quantum Monte Carlo (DQMC). Here we present details of the method, emphasizing the treatment of the lattice degrees of freedom, and then study the f