ﻻ يوجد ملخص باللغة العربية
In this article, we establish the Fefferman-Stein inequalities for the Dunkl maximal operator associated with a finite reflection group generated by the sign changes. Similar results are also given for a large class of operators related to Dunkls analysis.
In this paper, we consider the Fefferman-Stein decomposition of $Q_{alpha}(mathbb{R}^{n})$ and give an affirmative answer to an open problem posed by M. Essen, S. Janson, L. Peng and J. Xiao in 2000. One of our main methods is to study the structure
We exhibit a range of $ell ^{p}(mathbb{Z}^d)$-improving properties for the discrete spherical maximal average in every dimension $dgeq 5$. The strategy used to show these improving properties is then adapted to establish sparse bounds, which extend t
We prove an expanded range of $ell ^{p}(mathbb{Z}^d)$-improving properties and sparse bounds for discrete spherical maximal means in every dimension $dgeq 6$. Essential elements of the proofs are bounds for high exponent averages of Ramanujan and restricted Kloosterman sums.
Let $Dinmathbb{N}$, $qin[2,infty)$ and $(mathbb{R}^D,|cdot|,dx)$ be the Euclidean space equipped with the $D$-dimensional Lebesgue measure. In this article, via an auxiliary function space $mathrm{WE}^{1,,q}(mathbb R^D)$ defined via wavelet expansion
The connection between derivative operators and wavelets is well known. Here we generalize the concept by constructing multiresolution approximations and wavelet basis functions that act like Fourier multiplier operators. This construction follows fr