ترغب بنشر مسار تعليمي؟ اضغط هنا

Riesz Transform Characterization and Fefferman-Stein Decomposition of Triebel-Lizorkin Spaces

134   0   0.0 ( 0 )
 نشر من قبل Dachun Yang
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $Dinmathbb{N}$, $qin[2,infty)$ and $(mathbb{R}^D,|cdot|,dx)$ be the Euclidean space equipped with the $D$-dimensional Lebesgue measure. In this article, via an auxiliary function space $mathrm{WE}^{1,,q}(mathbb R^D)$ defined via wavelet expansions, the authors establish the Riesz transform characterization of Triebel-Lizorkin spaces $dot{F}^0_{1,,q}(mathbb{R}^D)$. As a consequence, the authors obtain the Fefferman-Stein decomposition of Triebel-Lizorkin spaces $dot{F}^0_{infty,,q}(mathbb{R}^D)$. Finally, the authors give an explicit example to show that $dot{F}^0_{1,,q}(mathbb{R}^D)$ is strictly contained in $mathrm{WE}^{1,,q}(mathbb{R}^D)$ and, by duality, $mathrm{WE}^{infty,,q}(mathbb{R}^D)$ is strictly contained in $dot{F}^0_{infty,,q}(mathbb{R}^D)$. Although all results when $D=1$ were obtained by C.-C. Lin et al. [Michigan Math. J. 62 (2013), 691-703], as was pointed out by C.-C. Lin et al., the approach used in the case $D=1$ can not be applied to the case $Dge2$, which needs some new skills.

قيم البحث

اقرأ أيضاً

A pair of dual frames with almost exponentially localized elements (needlets) are constructed on $RR_+^d$ based on Laguerre functions. It is shown that the Triebel-Lizorkin and Besov spaces induced by Laguerre expansions can be characterized in terms of respective sequence spaces that involve the needlet coefficients.
In this paper, we consider the Fefferman-Stein decomposition of $Q_{alpha}(mathbb{R}^{n})$ and give an affirmative answer to an open problem posed by M. Essen, S. Janson, L. Peng and J. Xiao in 2000. One of our main methods is to study the structure of the predual space of $Q_{alpha}(mathbb{R}^{n})$ by the micro-local quantities. This result indicates that the norm of the predual space of $Q_{alpha}(mathbb{R}^{n})$ depends on the micro-local structure in a self-correlation way.
We study a convergence result of Bourgain--Brezis--Mironescu (BBM) using Triebel-Lizorkin spaces. It is well known that as spaces $W^{s,p} = F^{s}_{p,p}$, and $H^{1,p} = F^{1}_{p,2}$. When $sto 1$, the $F^{s}_{p,p}$ norm becomes the $F^{1}_{p,p}$ nor m but BBM showed that the $W^{s,p}$ norm becomes the $H^{1,p} = F^{1}_{p,2}$ norm. Naively, for $p eq 2$ this seems like a contradiction, but we resolve this by providing embeddings of $W^{s,p}$ into $F^{s}_{p,q}$ for $q in {p,2}$ with sharp constants with respect to $s in (0,1)$. As a consequence we obtain an $mathbb{R}^N$-version of the BBM-result, and obtain several more embedding and convergence theorems of BBM-type that to the best of our knowledge are unknown.
In this article the authors study complex interpolation of Sobolev-Morrey spaces and their generalizations, Lizorkin-Triebel-Morrey spaces. Both scales are considered on bounded domains. Under certain conditions on the parameters the outcome belongs to the scale of the so-called diamond spaces.
We characterize the Schauder and unconditional basis properties for the Haar system in the Triebel-Lizorkin spaces $F^s_{p,q}(Bbb R^d)$, at the endpoint cases $s=1$, $s=d/p-d$ and $p=infty$. Together with the earlier results in [10], [4], this comple tes the picture for such properties in the Triebel-Lizorkin scale, and complements a similar study for the Besov spaces given in [5].
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا