ﻻ يوجد ملخص باللغة العربية
We propose the deterministic rate equation of three-species in the reaction - diffusion system. For this case, our purpose is to carry out the decay process in our three-species reaction-diffusion model of the form $A+B+Cto D$. The particle density and the global reaction rate are also shown analytically and numerically on a two-dimensional square lattice with the periodic boundary conditions. Especially, the crossover of the global reaction rate is discussed in both early-time and long-time regimes.
We study the decay process for the reaction-diffusion process of three species on the small-world network. The decay process is manipulated from the deterministic rate equation of three species in the reaction-diffusion system. The particle density a
The change from the diffusion-limited to the reaction-limited cooperative behaviour in reaction-diffusion systems is analysed by comparing the universal long-time behaviour of the coagulation-diffusion process on a chain and on the Bethe lattice. On
For reaction-diffusion processes with at most bimolecular reactants, we derive well-behaved, numerically tractable, exact Langevin equations that govern a stochastic variable related to the response field in field theory. Using duality relations, we
Starting from our recent chemical master equation derivation of the model of an autocatalytic reaction-diffusion chemical system with reactions $U+2V {stackrel {lambda_0}{rightarrow}}~ 3 V;$ and $V {stackrel {mu}{rightarrow}}~P$, $U {stackrel { u}{ri
The reversible A <-> B reaction-diffusion process, when species A and B are initially mixed and diffuse with different diffusion coefficients, is investigated using the boundary layer function method. It is assumed that the ratio of the characteristi