ترغب بنشر مسار تعليمي؟ اضغط هنا

Quark mass dependence of thermal excitations in QCD in one-loop approximation

198   0   0.0 ( 0 )
 نشر من قبل Daniel Seipt
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A comprehensive determination of the quark mass dependence in the dispersion relations of thermal excitations of gluons and quarks in non-Abelian gauge theory (QCD) is presented for the one-loop approximation in Feynman gauge. Larger values of the coupling are admitted, and the gauge dependence is discussed. In a Dyson-Schwinger type approach, the effect of higher orders is estimated for asymptotic thermal masses.

قيم البحث

اقرأ أيضاً

We discuss the impact of the charm quark mass in the CTEQ NNLO global analysis of parton distribution functions of the proton. The $bar{rm MS}$ mass $m_c(m_c)$ of the charm quark is extracted in the S-ACOT-$chi$ heavy-quark factorization scheme at ${ cal O}(alpha_s^2)$ accuracy and found to be in agreement with the world-average value. Impact on $m_c(m_c)$ of combined HERA-1 data on semiinclusive charm production at HERA collider and contributing systematic uncertainties are reviewed.
The temperature dependence of the sum of the QCD up- and down-quark masses, $(m_u + m_d)$ and the pion decay constant, $f_pi$, are determined from two thermal finite energy QCD sum rules for the pseudoscalar-current correlator. This quark-mass remain s mostly constant for temperatures well below the critical temperature for deconfinement/chiral-symmetry restoration. As this critical temperature is approached, the quark-mass increases sharply with increasing temperature. This increase is far more pronounced if the temperature dependence of the pion mass (determined independently from other methods) is taken into account. The behavior of $f_pi(T)$ is consistent with the expectation from chiral symmetry, i.e. that it should follow the thermal dependence of the quark condensate, independently of the quark mass.
Considering the general structure of the two point functions of quarks and gluons, we compute the free energy and pressure of a strongly magnetized hot and dense QCD matter created in heavy-ion collisions. In presence of strong magnetic field we foun d that the deconfined QCD matter exhibits a paramagnetic nature. One gets different pressure in a direction parallel and perpendicular to magnetic field due to the magnetization acquired by the system. We obtain both longitudinal and transverse pressure, and magnetization of a hot deconfined QCD matter in presence of magnetic field. We have used hard thermal loop approximation (HTL) for heat bath. We obtained completely analytic expression for pressure and magnetization under certain approximation. Various divergences appearing in free energy are regulated using appropriate counter terms. The obtained anisotropic pressure may be useful for magnetohydrodynamics description of a hot and dense deconfined QCD matter produced in heavy-ion collisions.
122 - O. V. Tarasov 2019
The results of calculation of the three-loop radiative correction to the renormalization constant of fermion masses for non-abelian gauge theory interacting with fermions are presented. Dimensional regularization and the t Hooft minimal subtraction s cheme are used. The method of calculation is described in detail. The renormalization group function $gamma_m$ determining the behavior of the effective mass of fermions is presented. The anomalous dimensions of fermions for QED and QCD up to three loops are given. All calculations were performed on a computer with the help of the SCHOOONSCHIP system for analytical manipulations. The present text was published in 1982 as a JINR Communication, JINR-P2-82-900 (in russian).
We consider our recently obtained general structure of two point (self-energy and propagator) functions of quarks and gluons in a nontrivial background like a heat bath and an external magnetic field. Based on this, here we have computed free energy and pressure of quarks and gluons for a magnetized hot and dense deconfined QCD matter in weak field approximation. For heat bath we have used hard thermal loop perturbation theory (HTLpt) in presence of finite chemical potential. For weak field approximations we have obtained the pressure of QCD matter, both with and without the high temperature expansion. The results with high $T$ expansions are completely analytic and gauge independent but depends on the renormalization scale in addition to the temperature, chemical potential and the external magnetic field. We also discuss the modification of QCD Debye mass of such matter for an arbitrary magnetic field. Analytic expressions for Debye mass are also obtained for both strong and weak field approximation. It is found to exhibit some interesting features depending upon the three different scales, i.e, the quark mass, temperature and the strength of the magnetic field. The various divergences appearing in the quark and gluon free energies are regulated through appropriate counter terms. In weak field approximation, the low temperature behavior of the pressure is found to strongly depend on the magnetic field than that at high temperature. We also discuss the specific problem with one-loop HTLpt associated with the over-counting of certain orders in coupling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا