ﻻ يوجد ملخص باللغة العربية
In this paper we analyze the effects of virtual vector bileptons in polarized Bhabha scattering at the energies of the future linear colliders. In order to make the calculations of the differential cross sections more realistic, important beam effects such as initial state radiation, beamstrahlung, beam energy and polarization spreads are accounted for. The finite resolution of a typical electromagnetic calorimeter planned for the new linear colliders is also considered in the simulation. The 95% confidence level limits for bilepton masses in 331 models are evaluated.
In this paper we investigate the LHC potential for discovering doubly-charged vector bileptons considering the measurable process $p,p$ $rightarrow$ $e^{mp}e^{mp}mu^{pm}mu^{pm} X$. We perform the study using four different bilepton masses and three d
Theoretical predictions for Bhabha scattering observables are presented including complete one-loop electroweak radiative corrections. A longitudinal polarization of the initial beams is taken into account. Numerical results for the asymmetry $A_{LR}
The results obtained by the Event Generators for Bhabha Scattering working group during the CERN Workshop Physics at LEP2 (1994/1995) are presented.
We present the calculation of the elastic and inelastic high--energy small--angle electron--positron scattering with a {it per mille} accuracy. PACS numbers 12.15.Lk, 12.20.--m, 12.20.Ds, 13.40.--f
We derive the two-loop corrections to Bhabha scattering from heavy fermions using dispersion relations. The double-box contributions are expressed by three kernel functions. Convoluting the perturbative kernels with fermionic threshold functions or w