ﻻ يوجد ملخص باللغة العربية
In this paper we investigate the LHC potential for discovering doubly-charged vector bileptons considering the measurable process $p,p$ $rightarrow$ $e^{mp}e^{mp}mu^{pm}mu^{pm} X$. We perform the study using four different bilepton masses and three different exotics quark masses. Minimal LHC integrated luminosities needed for discovering and for setting limits on bilepton masses are obtained for both 7 TeV and 14 TeV center-of-mass energies. We find that these spectacular signatures can be observed at the LHC in the next years up to a bilepton mass of order of 1 TeV.
In this paper we analyze the effects of virtual vector bileptons in polarized Bhabha scattering at the energies of the future linear colliders. In order to make the calculations of the differential cross sections more realistic, important beam effect
Doubly-charged Higgs bosons ($Delta^{--}/Delta^{++}$) appear in several extensions to the Standard Model and can be relatively light. We review the theoretical motivation for these states and present a study of the discovery reach in future runs of t
We study the production of doubly charged excited leptons at the LHC. These exotic states are predicted in extended weak isospin composite models. A recent analysis of such exotic states was based on a pure gauge model with magnetic type interactions
We consider the production at the LHC of exotic composite leptons of charge Q=+2e. Such states are allowed in composite models which contain extended isospin multiplets (Iw=1 and Iw=3/2). These doubly charged leptons couple with Standard Model [SM] f
We propose a channel for the possible discovery of new charged leptons at the Large Hadron Collider. The proposed final state contains three same-sign leptons, making this new channel practically back- groundless. The method is illustrated for two di