ﻻ يوجد ملخص باللغة العربية
Strongly correlated states in many-body systems are traditionally created using elastic interparticle interactions. Here we show that inelastic interactions between particles can also drive a system into the strongly correlated regime. This is shown by an experimental realization of a specific strongly correlated system, namely a one-dimensional molecular Tonks-Girardeau gas.
We show that strong inelastic interactions between bosons in one dimension create a Tonks-Girardeau gas, much as in the case of elastic interactions. We derive a Markovian master equation that describes the loss caused by the inelastic collisions. Th
A harmonically trapped ultracold 1D spin-1 Bose gas with strongly repulsive or attractive 1D even-wave interactions induced by a 3D Feshbach resonance is studied. The exact ground state, a hybrid of Tonks-Girardeau (TG) and ideal Fermi gases, is cons
We investigate the propagation of spin impurity atoms through a strongly interacting one-dimensional Bose gas. The initially well localized impurities are accelerated by a constant force, very much analogous to electrons subject to a bias voltage, an
We provide evidence in support of a recent proposal by Astrakharchik at al. for the existence of a super Tonks-Girardeau gas-like state in the attractive interaction regime of quasi-one-dimensional Bose gases. We show that the super Tonks-Giradeau ga
The single-particle spectral function of a strongly correlated system is an essential ingredient to describe its dynamics and transport properties. We develop a general method to calculate the exact spectral function of a strongly interacting one-dim