ﻻ يوجد ملخص باللغة العربية
We show that strong inelastic interactions between bosons in one dimension create a Tonks-Girardeau gas, much as in the case of elastic interactions. We derive a Markovian master equation that describes the loss caused by the inelastic collisions. This yields a loss rate equation and a dissipative Lieb-Liniger model for short times. We obtain an analytic expression for the pair correlation function in the limit of strong dissipation. Numerical calculations show how a diverging dissipation strength leads to a vanishing of the actual loss rate and renders an additional elastic part of the interaction irrelevant.
Strongly correlated states in many-body systems are traditionally created using elastic interparticle interactions. Here we show that inelastic interactions between particles can also drive a system into the strongly correlated regime. This is shown
Aiming at studying the emergence of Non-Equilibrium Steady States (NESS) in quantum integrable models by means of an exact analytical method, we focus on the Tonks-Girardeau or hard-core boson limit of the Lieb-Liniger model. We consider the abrupt e
A harmonically trapped ultracold 1D spin-1 Bose gas with strongly repulsive or attractive 1D even-wave interactions induced by a 3D Feshbach resonance is studied. The exact ground state, a hybrid of Tonks-Girardeau (TG) and ideal Fermi gases, is cons
We investigate the propagation of spin impurity atoms through a strongly interacting one-dimensional Bose gas. The initially well localized impurities are accelerated by a constant force, very much analogous to electrons subject to a bias voltage, an
The asymptotic form of the wave functions describing a freely expanding Lieb-Liniger gas is derived by using a Fermi-Bose transformation for time-dependent states, and the stationary phase approximation. We find that asymptotically the wave functions