ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence for the super Tonks-Girardeau gas

92   0   0.0 ( 0 )
 نشر من قبل Murray Batchelor
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide evidence in support of a recent proposal by Astrakharchik at al. for the existence of a super Tonks-Girardeau gas-like state in the attractive interaction regime of quasi-one-dimensional Bose gases. We show that the super Tonks-Giradeau gas-like state corresponds to a highly-excited Bethe state in the integrable interacting Bose gas for which the bosons acquire hard-core behaviour. The gas-like state properties vary smoothly throughout a wide range from strong repulsion to strong attraction. There is an additional stable gas-like phase in this regime in which the bosons form two-body bound states behaving like hard-core bosons.

قيم البحث

اقرأ أيضاً

We study the local correlations in the super Tonks-Girardeau gas, a highly excited, strongly correlated state obtained in quasi one-dimensional Bose gases by tuning the scattering length to large negative values using a confinement-induced resonance. Exploiting a connection with a relativistic field theory, we obtain results for the two-body and three-body local correlators at zero and finite temperature. At zero temperature our result for the three-body correlator agrees with the extension of the results of Cheianov et al. [Phys. Rev. A 73, 051604(R) (2006)], obtained for the ground-state of the repulsive Lieb-Liniger gas, to the super Tonks-Girardeau state. At finite temperature we obtain that the three-body correlator has a weak dependence on the temperature up to the degeneracy temperature. We also find that for temperatures larger than the degeneracy temperature the values of the three-body correlator for the super Tonks-Girardeau gas and the corresponding repulsive Lieb-Liniger gas are rather similar even for relatively small couplings.
85 - M.D. Girardeau 2010
A harmonically trapped ultracold 1D spin-1 Bose gas with strongly repulsive or attractive 1D even-wave interactions induced by a 3D Feshbach resonance is studied. The exact ground state, a hybrid of Tonks-Girardeau (TG) and ideal Fermi gases, is cons tructed in the TG limit of infinite even-wave repulsion by a spinor Fermi-Bose mapping to a spinless ideal Fermi gas. It is then shown that in the limit of infinite even-wave attraction this same state remains an exact many-body eigenstate, now highly excited relative to the collapsed generalized McGuire cluster ground state, showing that the hybrid TG state is completely stable against collapse to this cluster ground state under a sudden switch from infinite repulsion to infinite attraction. It is shown to be the TG limit of a hybrid super Tonks-Girardeau (STG) state which is metastable under a sudden switch from finite but very strong repulsion to finite but very strong attraction. It should be possible to create it experimentally by a sudden switch from strongly repulsive to strongly attractive interaction, as in the recent Innsbruck experiment on a spin-polarized bosonic STG gas. In the case of strong attraction there should also exist another STG state of much lower energy, consisting of strongly bound dimers, a bosonic analog of a recently predicted STG gas which is an ultracold gas of strongly bound bosonic dimers of fermionic atoms, but it is shown that this STG state cannot be created by such a switch from strong repulsion to strong attraction.
In this paper, we investigate the ground-state properties of a bosonic Tonks-Girardeau gas confined in a one-dimensional periodic potential. The single-particle reduced density matrix is computed numerically for systems up to $N=265$ bosons. Scaling analysis of the occupation number of the lowest orbital shows that there are no Bose-Einstein Condensation(BEC) for the periodically trapped TG gas in both commensurate and incommensurate cases. We find that, in the commensurate case, the scaling exponents of the occupation number of the lowest orbital, the amplitude of the lowest orbital and the zero-momentum peak height with the particle numbers are 0, -0.5 and 1, respectively, while in the incommensurate case, they are 0.5, -0.5 and 1.5, respectively. These exponents are related to each other in a universal relation.
70 - M.D. Girardeau 2010
A harmonically trapped ultracold 1D spinor Fermi gas with a strongly attractive 1D even-wave interaction induced by a 3D Feshbach resonance is studied. It is shown that it has two different super Tonks-Girardeau (sTG) energy eigenstates which are met astable against collapse in spite of the strong attraction, due to their close connection with 1D hard sphere Bose gases which are highly excited gas-like states. One of these sTG states is a hybrid between an sTG gas with strong $(uparrowdownarrow$ attractions and an ideal Fermi gas with no $(uparrowuparrow)$ or $(downarrowdownarrow)$ interactions, the sTG component being an exact analog of the recently observed sTG state of a 1D ultracold Bose gas. It should be possible to create it experimentally by a sudden switch of the $(uparrowdownarrow)$ interaction from strongly repulsive to strongly attractive, as in the recent Innsbruck experiment on the bosonic sTG gas. The other is a trapped analog of a recently predicted sTG state which is an ultracold gas of strongly bound $(uparrowdownarrow)$ fermion dimers which behave as bosons with a strongly attractive boson-boson interaction leading to sTG behavior. It is proved that the probability of a transition from the ground state for strongly repulsive interaction to this dimer state under a sudden switch from strongly repulsive to strongly attractive interaction is $ll 1$, contrary to a previous suggestion.
Strongly correlated states in many-body systems are traditionally created using elastic interparticle interactions. Here we show that inelastic interactions between particles can also drive a system into the strongly correlated regime. This is shown by an experimental realization of a specific strongly correlated system, namely a one-dimensional molecular Tonks-Girardeau gas.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا