ترغب بنشر مسار تعليمي؟ اضغط هنا

Levy Flight Superdiffusion: An Introduction

217   0   0.0 ( 0 )
 نشر من قبل Bernardo Spagnolo
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

After a short excursion from discovery of Brownian motion to the Richardson law of four thirds in turbulent diffusion, the article introduces the L{e}vy flight superdiffusion as a self-similar L{e}vy process. The condition of self-similarity converts the infinitely divisible characteristic function of the L{e}vy process into a stable characteristic function of the L{e}vy motion. The L{e}vy motion generalizes the Brownian motion on the base of the $alpha$-stable distributions theory and fractional order derivatives. The further development of the idea lies on the generalization of the Langevin equation with a non-Gaussian white noise source and the use of functional approach. This leads to the Kolmogorovs equation for arbitrary Markovian processes. As particular case we obtain the fractional Fokker-Planck equation for L{e}vy flights. Some results concerning stationary probability distributions of L{e}vy motion in symmetric smooth monostable potentials, and a general expression to calculate the nonlinear relaxation time in barrier crossing problems are derived. Finally we discuss results on the same characteristics and barrier crossing problems with L{e}vy flights, recently obtained with different approaches.

قيم البحث

اقرأ أيضاً

We present an extensive analysis of transport properties in superdiffusive two dimensional quenched random media, obtained by packing disks with radii distributed according to a Levy law. We consider transport and scaling properties in samples packed with two different procedures, at fixed filling fraction and at self-similar packing, and we clarify the role of the two procedures in the superdiffusive effects. Using the behavior of the filling fraction in finite size systems as the main geometrical parameter, we define an effective Levy exponents that correctly estimate the finite size effects. The effective Levy exponent rules the dynamical scaling of the main transport properties and identify the region where superdiffusive effects can be detected.
Anomalous finite-temperature transport has recently been observed in numerical studies of various integrable models in one dimension; these models share the feature of being invariant under a continuous non-abelian global symmetry. This work offers a comprehensive group-theoretic account of this elusive phenomenon. For an integrable quantum model invariant under a global non-abelian simple Lie group $G$, we find that finite-temperature transport of Noether charges associated with symmetry $G$ in thermal states that are invariant under $G$ is universally superdiffusive and characterized by dynamical exponent $z = 3/2$. This conclusion holds regardless of the Lie algebra symmetry, local degrees of freedom (on-site representations), Lorentz invariance, or particular realization of microscopic interactions: we accordingly dub it as superuniversal. The anomalous transport behavior is attributed to long-lived giant quasiparticles dressed by thermal fluctuations. We provide an algebraic viewpoint on the corresponding dressing transformation and elucidate formal connections to fusion identities amongst the quantum-group characters. We identify giant quasiparticles with nonlinear soliton modes of classical field theories that describe low-energy excitations above ferromagnetic vacua. Our analysis of these field theories also provides a complete classification of the low-energy (i.e., Goldstone-mode) spectra of quantum isotropic ferromagnetic chains.
This review summarizes recent advances in our understanding of anomalous transport in spin chains, viewed through the lens of integrability. Numerical advances, based on tensor-network methods, have shown that transport in many canonical integrable s pin chains -- most famously the Heisenberg model -- is anomalous. Concurrently, the framework of generalized hydrodynamics has been extended to explain some of the mechanisms underlying anomalous transport. We present what is currently understood about these mechanisms, and discuss how they resemble (and differ from) the mechanisms for anomalous transport in other contexts. We also briefly review potential transport anomalies in systems where integrability is an emergent or approximate property. We survey instances of anomalous transport and dynamics that remain to be understood.
112 - Alexandre Bovet 2015
The process of diffusion is the most elementary stochastic transport process. Brownian motion, the representative model of diffusion, played a important role in the advancement of scientific fields such as physics, chemistry, biology and finance. How ever, in recent decades, non-diffusive transport processes with non-Brownian statistics were observed experimentally in a multitude of scientific fields. Examples include human travel, in-cell dynamics, the motion of bright points on the solar surface, the transport of charge carriers in amorphous semiconductors, the propagation of contaminants in groundwater, the search patterns of foraging animals and the transport of energetic particles in turbulent plasmas. These examples showed that the assumptions of the classical diffusion paradigm, assuming an underlying uncorrelated (Markovian), Gaussian stochastic process, need to be relaxed to describe transport processes exhibiting a non-local character and exhibiting long-range correlations. This article does not aim at presenting a complete review of non-diffusive transport, but rather an introduction for readers not familiar with the topic. For more in depth reviews, we recommend some references in the following. First, we recall the basics of the classical diffusion model and then we present two approaches of possible generalizations of this model: the Continuous-Time-Random-Walk (CTRW) and the fractional Levy motion (fLm).
Levy walks (LWs) are spatiotemporally coupled random-walk processes describing superdiffusive heat conduction in solids, propagation of light in disordered optical materials, motion of molecular motors in living cells, or motion of animals, humans, r obots, and viruses. We here investigate a key feature of LWs, their response to an external harmonic potential. In this generic setting for confined motion we demonstrate that LWs equilibrate exponentially and may assume a bimodal stationary distribution. We also show that the stationary distribution has a horizontal slope next to a reflecting boundary placed at the origin, in contrast to correlated superdiffusive processes. Our results generalize LWs to confining forces and settle some long-standing puzzles around LWs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا