ﻻ يوجد ملخص باللغة العربية
The process of diffusion is the most elementary stochastic transport process. Brownian motion, the representative model of diffusion, played a important role in the advancement of scientific fields such as physics, chemistry, biology and finance. However, in recent decades, non-diffusive transport processes with non-Brownian statistics were observed experimentally in a multitude of scientific fields. Examples include human travel, in-cell dynamics, the motion of bright points on the solar surface, the transport of charge carriers in amorphous semiconductors, the propagation of contaminants in groundwater, the search patterns of foraging animals and the transport of energetic particles in turbulent plasmas. These examples showed that the assumptions of the classical diffusion paradigm, assuming an underlying uncorrelated (Markovian), Gaussian stochastic process, need to be relaxed to describe transport processes exhibiting a non-local character and exhibiting long-range correlations. This article does not aim at presenting a complete review of non-diffusive transport, but rather an introduction for readers not familiar with the topic. For more in depth reviews, we recommend some references in the following. First, we recall the basics of the classical diffusion model and then we present two approaches of possible generalizations of this model: the Continuous-Time-Random-Walk (CTRW) and the fractional Levy motion (fLm).
We discuss how to construct models of interacting anyons by generalizing quantum spin Hamiltonians to anyonic degrees of freedom. The simplest interactions energetically favor pairs of anyons to fuse into the trivial (identity) channel, similar to th
This monograph introduces the reader to basic notions of integrable techniques for one-dimensional quantum systems. In a pedagogical way, a few examples of exactly solvable models are worked out to go from the coordinate approach to the Algebraic Bet
After a short excursion from discovery of Brownian motion to the Richardson law of four thirds in turbulent diffusion, the article introduces the L{e}vy flight superdiffusion as a self-similar L{e}vy process. The condition of self-similarity converts
We study the behavior of stationary non-equilibrium two-body correlation functions for Diffusive Systems with equilibrium reference states (DSe). A DSe is described at the mesoscopic level by $M$ locally conserved continuum fields that evolve through
The theory of small-system thermodynamics was originally developed to extend the laws of thermodynamics to length scales of nanometers. Here we review this nanothermodynamics, and stress how it also applies to large systems that subdivide into a hete