ترغب بنشر مسار تعليمي؟ اضغط هنا

On $p$-adic spectral measures

278   0   0.0 ( 0 )
 نشر من قبل Ruxi Shi
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English
 تأليف Ruxi Shi




اسأل ChatGPT حول البحث

A Borel probability measure $mu$ on a locally compact group is called a spectral measure if there exists a subset of continuous group characters which forms an orthogonal basis of the Hilbert space $L^2(mu)$. In this paper, we characterize all spectral measures in the field $mathbb{Q}_p$ of $p$-adic numbers.



قيم البحث

اقرأ أيضاً

201 - Simon Baker 2021
In this paper we prove that if ${varphi_i(x)=lambda x+t_i}$ is an equicontractive iterated function system and $b$ is a positive integer satisfying $frac{log b}{log |lambda|} otinmathbb{Q},$ then almost every $x$ is normal in base $b$ for any non-atomic self-similar measure of ${varphi_i}$.
We study $p$-adic multiresolution analyses (MRAs). A complete characterisation of test functions generating a MRA (scaling functions) is given. We prove that only 1-periodic test functions may be taken as orthogonal scaling functions and that all suc h scaling functions generate Haar MRA. We also suggest a method of constructing sets of wavelet functions and prove that any set of wavelet functions generates a $p$-adic wavelet frame.
We prove a $p$-adic version of the Integral Geometry Formula for averaging the intersection of two $p$-adic projective algebraic sets. We apply this result to give bounds on the number of points in the modulo $p^m$ reduction of a projective set (repr oving a result by Oesterle) and to the study of random $p$-adic polynomial systems of equations.
We investigate norms of spectral projectors on thin spherical shells for the Laplacian on tori. This is closely related to the boundedness of resolvents of the Laplacian, and to the boundedness of $L^p$ norms of eigenfunctions of the Laplacian. We formulate a conjecture, and partially prove it.
We provide new answers about the placement of mass on spheres so as to minimize energies of pairwise interactions. We find optimal measures for the $p$-frame energies, i.e. energies with the kernel given by the absolute value of the inner product rai sed to a positive power $p$. Application of linear programming methods in the setting of projective spaces allows for describing the minimizing measures in full in several cases: we show optimality of tight designs and of the $600$-cell for several ranges of $p$ in different dimensions. Our methods apply to a much broader class of potential functions, those which are absolutely monotonic up to a particular order as functions of the cosine of the geodesic distance. In addition, a preliminary numerical study is presented which suggests optimality of several other highly symmetric configurations and weighted designs in low dimensions. In one case we improve the best known lower bounds on a minimal sized weighted design in $mathbb{CP}^4$. All these results point to the discreteness of minimizing measures for the $p$-frame energy with $p$ not an even integer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا