ﻻ يوجد ملخص باللغة العربية
Simulations of stochastically forced shear-flow turbulence in a shearing-periodic domain are used to study the spontaneous generation of large-scale flow patterns in the direction perpendicular to the plane of the shear. Based on an analysis of the resulting large-scale velocity correlations it is argued that the mechanism behind this phenomenon could be the mean-vorticity dynamo effect pioneered by Elperin, Kleeorin, and Rogachevskii in 2003 (Phys. Rev. E 68, 016311). This effect is based on the anisotropy of the eddy viscosity tensor. One of its components may be able to replenish cross-stream mean flows by acting upon the streamwise component of the mean flow. Shear, in turn, closes the loop by acting upon the cross-stream mean flow to produce stronger streamwise mean flows. The diagonal component of the eddy viscosity is found to be of the order of the rms turbulent velocity divided by the wavenumber of the energy-carrying eddies.
We discuss a mean-field theory of generation of large-scale vorticity in a rotating density stratified developed turbulence with inhomogeneous kinetic helicity. We show that the large-scale nonuniform flow is produced due to ether a combined action o
We find an instability resulting in generation of large-scale vorticity in a fast rotating small-scale turbulence or turbulent convection with inhomogeneous fluid density along the rotational axis in anelastic approximation. The large-scale instabili
Multiphase shear flows often show banded structures that affect the global behavior of complex fluids e.g. in microdevices. Here we investigate numerically the banding of emulsions, i.e. the formation of regions of high and low volume fraction, alter
A linearly unstable, sinusoidal $E times B$ shear flow is examined in the gyrokinetic framework in both the linear and nonlinear regimes. In the linear regime, it is shown that the eigenmode spectrum is nearly identical to hydrodynamic shear flows, w
We explore the stability of the variance and skewness of the cosmic gravitational convergence field, using two different approaches: first we simulate a whole MEGACAM survey (100 sq. degrees). The reconstructed mass map, obtained from a shear map, sh