ترغب بنشر مسار تعليمي؟ اضغط هنا

Numerical Simulations of Vorticity Banding of Emulsions in Shear Flows

94   0   0.0 ( 0 )
 نشر من قبل Francesco De Vita
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Multiphase shear flows often show banded structures that affect the global behavior of complex fluids e.g. in microdevices. Here we investigate numerically the banding of emulsions, i.e. the formation of regions of high and low volume fraction, alternated in the vorticity direction and aligned with the flow (shear bands). These bands are associated with a decrease of the effective viscosity of the system. To understand the mechanism of banding experimentally observed we have performed interface resolved simulations of the two-fluid system. The experiments were perfomed starting with a random distribution of droplets which, under the applied shear, evolves in time resulting in a phase separation. To numerically reproduce this process, the banded structures are initialized in a narrow channel confined by two walls moving in opposite direction. We find that the initial banded distribution is stable when droplets are free to merge and unstable when coalescence is prevented. In this case, additionally, the effective viscosity of the system increases, resembling the rheological behavior of suspensions of deformable particles. Droplets coalescence, on the other hand, allows emulsions to reduce the total surface of the system and hence the energy dissipation associated to the deformation, which in turn reduces the effective viscosity.

قيم البحث

اقرأ أيضاً

We present a modification of a recently developed volume of fluid method for multiphase problems, so that it can be used in conjunction with a fractional step-method and fast Poisson solver, and validate it with standard benchmark problems. We then c onsider emulsions of two-fluid systems and study their rheology in a plane Couette flow in the limit of vanishing inertia. We examine the dependency of the effective viscosity on the volume-fraction (from 10% to 30%) and the Capillary number (from 0.1 to 0.4) for the case of density and viscosity ratio 1. We show that the effective viscosity decreases with the deformation and the applied shear (shear-thinning) while exhibits a non-monotonic behavior with respect to the volume fraction. We report the appearance of a maximum in the effective viscosity curve and compare the results with those of suspensions of rigid and deformable particles and capsules. We show that the flow in the solvent is mostly a shear flow, while it is mostly rotational in the suspended phase; moreover this behavior tends to reverse as the volume fraction increases. Finally, we evaluate the contributions to the total shear stress of the viscous stresses in the two fluids and of the interfacial force between them.
We analyze transient dynamics during shear start-up in viscoelastic flows between two parallel plates, with a specific focus on the signatures for the onset of transient shear banding using the Johnson-Segalman, non-stretching Rolie-Poly and Giesekus models. We explore the dynamics of shear start-up in monotonic regions of the constitutive curves using two different methodologies: (i) the oft-used `frozen-time linear stability (eigenvalue) analysis, wherein we examine whether infinitesimal perturbations imposed on instantaneous stress components (treated as quasi steady states) exhibit exponential growth, and (ii) the more mathematically rigorous fundamental-matrix approach that characterizes the transient growth via a numerical solution of the time-dependent linearized governing equations, wherein the linearized perturbations co-evolve with the start-up shear flow. Our results reinforce the hitherto understated point that there is no universal connection between the overshoot and subsequent decay of shear stress in the base state and the unstable eigenvalues obtained from the frozen-time stability analysis. It may therefore be difficult to subsume the occurrence of transient shear banding during shear start-up within the ambit of a single model-independent criterion. Our work also suggests that the strong transients during shear start-up seen in earlier work could well be a consequence of consideration of the limit of small solvent viscosity in the absence of otherwise negligible terms such as fluid inertia.
We perform $3$D numerical simulations to investigate the sedimentation of a single sphere in the absence and presence of a simple cross shear flow in a yield stress fluid with weak inertia. In our simulations, the settling flow is considered to be th e primary flow, whereas the linear cross shear flow is a secondary flow with amplitude $10%$ of the primary flow. To study the effects of elasticity and plasticity of the carrying fluid on the sphere drag as well as the flow dynamics, the fluid is modeled using the elastovisco-plastic (EVP) constitutive laws proposed by cite{saramito2009new}. The extra non-Newtonian stress tensor is fully coupled with the flow equation and the solid particle is represented by an immersed boundary (IB) method. Our results show that the fore-aft asymmetry in the velocity is less pronounced and the negative wake disappears when a linear cross shear flow is applied. We find that the drag on a sphere settling in a sheared yield stress fluid is reduced significantly as compared to an otherwise quiescent fluid. More importantly, the sphere drag in the presence of a secondary cross shear flow cannot be derived from the pure sedimentation drag law owing to the non-linear coupling between the simple shear flow and the uniform flow. Finally, we show that the drag on the sphere settling in a sheared yield-stress fluid is reduced at higher material elasticity mainly due to the form and viscous drag reduction.
We simulated two particle-based fluid models, namely multiparticle collision dynamics and dissipative particle dynamics, under shear using reverse nonequilibrium simulations (RNES). In cubic periodic simulation boxes, the expected shear flow profile for a Newtonian fluid developed, consistent with the fluid viscosities. However, unexpected secondary flows along the shear gradient formed when the simulation box was elongated in the flow direction. The standard shear flow profile was obtained when the simulation box was longer in the shear-gradient dimension than the flow dimension, while the secondary flows were always present when the flow dimension was at least 25% larger than the shear-gradient dimension. The secondary flows satisfy the boundary conditions imposed by the RNES and have a lower rate of viscous dissipation in the fluid than the corresponding unidirectional flows. This work highlights a previously unappreciated limitation of RNES for generating shear flow in simulation boxes that are elongated in the flow dimension, an important consideration when applying RNES to complex fluids like polymer solutions.
The nonlinear and nonlocal coupling of vorticity and strain-rate constitutes a major hindrance in understanding the self-amplification of velocity gradients in turbulent fluid flows. Utilizing highly-resolved direct numerical simulations of isotropic turbulence in periodic domains of up to $12288^3$ grid points, and Taylor-scale Reynolds number $R_lambda$ in the range $140-1300$, we investigate this non-locality by decomposing the strain-rate tensor into local and non-local contributions obtained through Biot-Savart integration of vorticity in a sphere of radius $R$. We find that vorticity is predominantly amplified by the non-local strain coming beyond a characteristic scale size, which varies as a simple power-law of vorticity magnitude. The underlying dynamics preferentially align vorticity with the most extensive eigenvector of non-local strain. The remaining local strain aligns vorticity with the intermediate eigenvector and does not contribute significantly to amplification; instead it surprisingly attenuates intense vorticity, leading to breakdown of the observed power-law and ultimately also the scale-invariance of vorticity amplification, with important implications for prevailing intermittency theories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا