ترغب بنشر مسار تعليمي؟ اضغط هنا

A New Method for Constructing Large Size WBE Codes with Low Complexity ML Decoder

166   0   0.0 ( 0 )
 نشر من قبل Pedram Pad
 تاريخ النشر 2009
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we wish to introduce a method to reconstruct large size Welch Bound Equality (WBE) codes from small size WBE codes. The advantage of these codes is that the implementation of ML decoder for the large size codes is reduced to implementation of ML decoder for the core codes. This leads to a drastic reduction of the computational cost of ML decoder. Our method can also be used for constructing large Binary WBE (BWBE) codes from smaller ones. Additionally, we explain that although WBE codes are maximizing the sum channel capacity when the inputs are real valued, they are not necessarily appropriate when the input alphabet is binary. The discussion shows that when the input alphabet is binary, the Total Squared Correlation (TSC) of codes is not a proper figure of merit.

قيم البحث

اقرأ أيضاً

In this paper we propose a new design criterion and a new class of unitary signal constellations for differential space-time modulation for multiple-antenna systems over Rayleigh flat-fading channels with unknown fading coefficients. Extensive simula tions show that the new codes have significantly better performance than existing codes. We have compared the performance of our codes with differential detection schemes using orthogonal design, Cayley differential codes, fixed-point-free group codes and product of groups and for the same bit error rate, our codes allow smaller signal to noise ratio by as much as 10 dB. The design of the new codes is accomplished in a systematic way through the optimization of a performance index that closely describes the bit error rate as a function of the signal to noise ratio. The new performance index is computationally simple and we have derived analytical expressions for its gradient with respect to constellation parameters. Decoding of the proposed constellations is reduced to a set of one-dimensional closest point problems that we solve using parallel sphere decoder algorithms. This decoding strategy can also improve efficiency of existing codes.
81 - Erdal Arikan 2009
A method is proposed, called channel polarization, to construct code sequences that achieve the symmetric capacity $I(W)$ of any given binary-input discrete memoryless channel (B-DMC) $W$. The symmetric capacity is the highest rate achievable subject to using the input letters of the channel with equal probability. Channel polarization refers to the fact that it is possible to synthesize, out of $N$ independent copies of a given B-DMC $W$, a second set of $N$ binary-input channels ${W_N^{(i)}:1le ile N}$ such that, as $N$ becomes large, the fraction of indices $i$ for which $I(W_N^{(i)})$ is near 1 approaches $I(W)$ and the fraction for which $I(W_N^{(i)})$ is near 0 approaches $1-I(W)$. The polarized channels ${W_N^{(i)}}$ are well-conditioned for channel coding: one need only send data at rate 1 through those with capacity near 1 and at rate 0 through the remaining. Codes constructed on the basis of this idea are called polar codes. The paper proves that, given any B-DMC $W$ with $I(W)>0$ and any target rate $R < I(W)$, there exists a sequence of polar codes ${{mathscr C}_n;nge 1}$ such that ${mathscr C}_n$ has block-length $N=2^n$, rate $ge R$, and probability of block error under successive cancellation decoding bounded as $P_{e}(N,R) le bigoh(N^{-frac14})$ independently of the code rate. This performance is achievable by encoders and decoders with complexity $O(Nlog N)$ for each.
The problem of finding good linear codes for joint source-channel coding (JSCC) is investigated in this paper. By the code-spectrum approach, it has been proved in the authors previous paper that a good linear code for the authors JSCC scheme is a co de with a good joint spectrum, so the main task in this paper is to construct linear codes with good joint spectra. First, the code-spectrum approach is developed further to facilitate the calculation of spectra. Second, some general principles for constructing good linear codes are presented. Finally, we propose an explicit construction of linear codes with good joint spectra based on low density parity check (LDPC) codes and low density generator matrix (LDGM) codes.
Based on the erasure channel FEC model as defined in multimedia wireless broadcast standards, we illustrate how doping mechanisms included in the design of erasure coding and decoding may improve the scalability of the packet throughput, decrease ove rall latency and potentially differentiate among classes of multimedia subscribers regardless of their signal quality. We describe decoding mechanisms that allow for linear complexity and give complexity bounds when feedback is available. We show that elaborate coding schemes which include pre-coding stages are inferior to simple Ideal Soliton based rateless codes, combined with the proposed two-phase decoder. The simplicity of this scheme and the availability of tight bounds on latency given pre-allocated radio resources makes it a practical and efficient design solution.
Polar codes, discovered by Ar{i}kan, are the first error-correcting codes with an explicit construction to provably achieve channel capacity, asymptotically. However, their error-correction performance at finite lengths tends to be lower than existin g capacity-approaching schemes. Using the successive-cancellation algorithm, polar decoders can be designed for very long codes, with low hardware complexity, leveraging the regular structure of such codes. We present an architecture and an implementation of a scalable hardware decoder based on this algorithm. This design is shown to scale to code lengths of up to N = 2^20 on an Altera Stratix IV FPGA, limited almost exclusively by the amount of available SRAM.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا