ﻻ يوجد ملخص باللغة العربية
The problem of finding good linear codes for joint source-channel coding (JSCC) is investigated in this paper. By the code-spectrum approach, it has been proved in the authors previous paper that a good linear code for the authors JSCC scheme is a code with a good joint spectrum, so the main task in this paper is to construct linear codes with good joint spectra. First, the code-spectrum approach is developed further to facilitate the calculation of spectra. Second, some general principles for constructing good linear codes are presented. Finally, we propose an explicit construction of linear codes with good joint spectra based on low density parity check (LDPC) codes and low density generator matrix (LDGM) codes.
One of the most important and challenging problems in coding theory is to construct codes with best possible parameters and properties. The class of quasi-cyclic (QC) codes is known to be fertile to produce such codes. Focusing on QC codes over the b
A long standing problem in the area of error correcting codes asks whether there exist good cyclic codes. Most of the known results point in the direction of a negative answer. The uncertainty principle is a classical result of harmonic analysis as
We prove that, for the binary erasure channel (BEC), the polar-coding paradigm gives rise to codes that not only approach the Shannon limit but do so under the best possible scaling of their block length as a~function of the gap to capacity. This res
In this paper motivated from subspace coding we introduce subspace-metric and subset-metric codes. These are coordinate-position independent pseudometrics and suitable for the folded codes introduced by Guruswami and Rudra. The half-Singleton upper b
This paper studies several properties of channel codes that approach the fundamental limits of a given (discrete or Gaussian) memoryless channel with a non-vanishing probability of error. The output distribution induced by an $epsilon$-capacity-achie