ترغب بنشر مسار تعليمي؟ اضغط هنا

Low Complexity Differentiating Adaptive Erasure Codes for Multimedia Wireless Broadcast

135   0   0.0 ( 0 )
 نشر من قبل Silvija Kokalj-Filipovic
 تاريخ النشر 2012
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Based on the erasure channel FEC model as defined in multimedia wireless broadcast standards, we illustrate how doping mechanisms included in the design of erasure coding and decoding may improve the scalability of the packet throughput, decrease overall latency and potentially differentiate among classes of multimedia subscribers regardless of their signal quality. We describe decoding mechanisms that allow for linear complexity and give complexity bounds when feedback is available. We show that elaborate coding schemes which include pre-coding stages are inferior to simple Ideal Soliton based rateless codes, combined with the proposed two-phase decoder. The simplicity of this scheme and the availability of tight bounds on latency given pre-allocated radio resources makes it a practical and efficient design solution.

قيم البحث

اقرأ أيضاً

Polar codes are introduced for discrete memoryless broadcast channels. For $m$-user deterministic broadcast channels, polarization is applied to map uniformly random message bits from $m$ independent messages to one codeword while satisfying broadcas t constraints. The polarization-based codes achieve rates on the boundary of the private-message capacity region. For two-user noisy broadcast channels, polar implementations are presented for two information-theoretic schemes: i) Covers superposition codes; ii) Martons codes. Due to the structure of polarization, constraints on the auxiliary and channel-input distributions are identified to ensure proper alignment of polarization indices in the multi-user setting. The codes achieve rates on the capacity boundary of a few classes of broadcast channels (e.g., binary-input stochastically degraded). The complexity of encoding and decoding is $O(n*log n)$ where $n$ is the block length. In addition, polar code sequences obtain a stretched-exponential decay of $O(2^{-n^{beta}})$ of the average block error probability where $0 < beta < 0.5$.
Streaming codes are a class of packet-level erasure codes that are designed with the goal of ensuring recovery in low-latency fashion, of erased packets over a communication network. It is well-known in the streaming code literature, that diagonally embedding codewords of a $[tau+1,tau+1-a]$ Maximum Distance Separable (MDS) code within the packet stream, leads to rate-optimal streaming codes capable of recovering from $a$ arbitrary packet erasures, under a strict decoding delay constraint $tau$. Thus MDS codes are geared towards the efficient handling of the worst-case scenario corresponding to the occurrence of $a$ erasures. In the present paper, we have an increased focus on the efficient handling of the most-frequent erasure patterns. We study streaming codes which in addition to recovering from $a>1$ arbitrary packet erasures under a decoding delay $tau$, have the ability to handle the more common occurrence of a single-packet erasure, while incurring smaller delay $r<tau$. We term these codes as $(a,tau,r)$ locally recoverable streaming codes (LRSCs), since our single-erasure recovery requirement is similar to the requirement of locality in a coded distributed storage system. We characterize the maximum possible rate of an LRSC by presenting rate-optimal constructions for all possible parameters ${a,tau,r}$. Although the rate-optimal LRSC construction provided in this paper requires large field size, the construction is explicit. It is also shown that our $(a,tau=a(r+1)-1,r)$ LRSC construction provides the additional guarantee of recovery from the erasure of $h, 1 leq h leq a$, packets, with delay $h(r+1)-1$. The construction thus offers graceful degradation in decoding delay with increasing number of erasures.
This paper focuses on the Layered Packet Erasure Broadcast Channel (LPE-BC) with Channel Output Feedback (COF) available at the transmitter. The LPE-BC is a high-SNR approximation of the fading Gaussian BC recently proposed by Tse and Yates, who char acterized the capacity region for any number of users and any number of layers when there is no COF. This paper provides a comparative overview of this channel model along the following lines: First, inner and outer bounds to the capacity region (set of achievable rates with backlogged arrivals) are presented: a) a new outer bound based on the idea of the physically degraded broadcast channel, and b) an inner bound of the LPE-BC with COF for the case of two users and any number of layers. Next, an inner bound on the stability region (set of exogenous arrival rates for which packet arrival queues are stable) for the same model is derived. The capacity region inner bound generalizes past results for the two-user erasure BC, which is a special case of the LPE-BC with COF with only one layer. The novelty lies in the use of inter-user and inter-layer network coding retransmissions (for those packets that have only been received by the unintended user), where each random linear combination may involve packets intended for any user originally sent on any of the layers. For the case of $K = 2$ users and $Q geq 1$ layers, the inner bounds to the capacity region and the stability region coincide; both strategically employ the novel retransmission protocol. For the case of $Q = 2$ layers, sufficient conditions are derived by Fourier-Motzkin elimination for the inner bound on the stability region to coincide with the capacity outer bound, thus showing that in those cases the capacity and stability regions coincide.
In wireless data networks, communication is particularly susceptible to eavesdropping due to its broadcast nature. Security and privacy systems have become critical for wireless providers and enterprise networks. This paper considers the problem of s ecret communication over the Gaussian broadcast channel, where a multi-antenna transmitter sends independent confidential messages to two users with perfect secrecy. That is, each user would like to obtain its own message reliably and confidentially. First, a computable Sato-type outer bound on the secrecy capacity region is provided for a multi-antenna broadcast channel with confidential messages. Next, a dirty-paper secure coding scheme and its simplified version are described. For each case, the corresponding achievable rate region is derived under the perfect secrecy requirement. Finally, two numerical examples demonstrate that the Sato-type outer bound is consistent with the boundary of the simplified dirty-paper coding secrecy rate region.
Jolfaei et al. used feedback to create transmit signals that are simultaneously useful for multiple users in a broadcast channel. Later, Georgiadis and Tassiulas studied erasure broadcast channels with feedback, and presented the capacity region unde r certain assumptions. These results provided the fundamental ideas used in communication protocols for networks with delayed channel state information. However, to the best of our knowledge, the capacity region of erasure broadcast channels with feedback and with a common message for both receivers has never been presented. This latter problem shows up as a sub-problem in many multi-terminal communication networks such as the X-Channel, and the two-unicast problem. In this work, we present the capacity region of the two-user erasure broadcast channels with delayed feedback, private messages, and a common message. We consider arbitrary and possibly correlated erasure distributions. We develop new outer-bounds that capture feedback and quantify the impact of delivering a common message on the capacity region. We also propose a transmission strategy that achieves the outer-bounds. Our transmission strategy differs from prior results in that to achieve the capacity, it creates side-information at the weaker user such that the decodability is ensured even if we multicast the common message with a rate higher than its link capacity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا