ﻻ يوجد ملخص باللغة العربية
The aim of the presented work was to develop further techniques based on a Micromegas-TPC, in order to reach a high gas gain with good energy resolution, and to search for gas mixtures suitable for rare event detection. This paper focuses on xenon, which is convenient for the search of neutrinoless double beta decay in 136 Xe. Conversely, a small admixture of xenon to CF 4 can reduce attachment in the latter. This gas mixture would be suitable for dark matter searches and the study of solar and reactor neutrinos. Various configurations of the Micromegas plane were investigated and are described.
The Spherical gaseous detector (or Spherical Proportional Counter, SPC) is a novel type of par- ticle detector, with a broad range of applications. Its main features include a very low energy threshold independent of the volume (due to its very low c
High pressure xenon Time Projection Chambers (TPC) based on secondary scintillation (electroluminescence) signal amplification are being proposed for rare event detection such as directional dark matter, double electron capture and double beta decay
A novel low-energy neutrino-oscillation experiment NOSTOS, combining a strong tritium source and a high pressure spherical TPC detector (10 m in radius) has been recently proposed. The goal of the experiment is to measure the mixing angle $theta_{13}
The neutron lifetime is important in understanding the production of light nuclei in the first minutes after the big bang and it provides basic information on the charged weak current of the standard model of particle physics. Two different methods h
We describe a novel approach to particle-detector cooling in which a modular farm of active coolant-control platforms provides independent and regulated heat removal from four recently upgraded subsystems of the CLEO detector: the ring-imaging Cheren