ﻻ يوجد ملخص باللغة العربية
We describe a novel approach to particle-detector cooling in which a modular farm of active coolant-control platforms provides independent and regulated heat removal from four recently upgraded subsystems of the CLEO detector: the ring-imaging Cherenkov detector, the drift chamber, the silicon vertex detector, and the beryllium beam pipe. We report on several aspects of the system: the suitability of using the aliphatic-hydrocarbon solvent PF(TM)-200IG as a heat-transfer fluid, the sensor elements and the mechanical design of the farm platforms, a control system that is founded upon a commercial programmable logic controller employed in industrial process-control applications, and a diagnostic system based on virtual instrumentation. We summarize the systems performance and point out the potential application of the design to future high-energy physics apparatus.
The influence of bright light on a single-photon detector has been described in a number of recent publications. The impact on quantum key distribution (QKD) is important, and several hacking experiments have been tailored to fully control single-pho
The aim of the presented work was to develop further techniques based on a Micromegas-TPC, in order to reach a high gas gain with good energy resolution, and to search for gas mixtures suitable for rare event detection. This paper focuses on xenon, w
In spring 2012 CERN provided two weeks of a short bunch proton beam dedicated to the neutrino velocity measurement over a distance of 730 km. The OPERA neutrino experiment at the underground Gran Sasso Laboratory used an upgraded setup compared to th
The MiniBooNE neutrino detector was designed and built to look for muon-neutrino to electron-neutrino oscillations in the mixing parameter space region where the LSND experiment reported a signal. The MiniBooNE experiment used a beam energy and basel
The CLEO III detector has recently commenced data taking at the Cornell electron Storage Ring (CESR). One important component of this detector is a 4 layer double-sided silicon tracker with 93% solid angle coverage. This detector ranges in size and n