ترغب بنشر مسار تعليمي؟ اضغط هنا

Active cooling control of the CLEO detector using a hydrocarbon coolant farm

53   0   0.0 ( 0 )
 نشر من قبل Andreas Warburton
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe a novel approach to particle-detector cooling in which a modular farm of active coolant-control platforms provides independent and regulated heat removal from four recently upgraded subsystems of the CLEO detector: the ring-imaging Cherenkov detector, the drift chamber, the silicon vertex detector, and the beryllium beam pipe. We report on several aspects of the system: the suitability of using the aliphatic-hydrocarbon solvent PF(TM)-200IG as a heat-transfer fluid, the sensor elements and the mechanical design of the farm platforms, a control system that is founded upon a commercial programmable logic controller employed in industrial process-control applications, and a diagnostic system based on virtual instrumentation. We summarize the systems performance and point out the potential application of the design to future high-energy physics apparatus.



قيم البحث

اقرأ أيضاً

The influence of bright light on a single-photon detector has been described in a number of recent publications. The impact on quantum key distribution (QKD) is important, and several hacking experiments have been tailored to fully control single-pho ton detectors. Special attention has been given to avoid introducing further errors into a QKD system. We describe the design and technical details of an apparatus which allows to attack a quantum-cryptographic connection. This device is capable of controlling free-space and fiber-based systems and of minimizing unwanted clicks in the system. With different control diagrams, we are able to achieve a different level of control. The control was initially targeted to the systems using BB84 protocol, with polarization encoding and basis switching using beamsplitters, but could be extended to other types of systems. We further outline how to characterize the quality of active control of single-photon detectors.
The aim of the presented work was to develop further techniques based on a Micromegas-TPC, in order to reach a high gas gain with good energy resolution, and to search for gas mixtures suitable for rare event detection. This paper focuses on xenon, w hich is convenient for the search of neutrinoless double beta decay in 136 Xe. Conversely, a small admixture of xenon to CF 4 can reduce attachment in the latter. This gas mixture would be suitable for dark matter searches and the study of solar and reactor neutrinos. Various configurations of the Micromegas plane were investigated and are described.
In spring 2012 CERN provided two weeks of a short bunch proton beam dedicated to the neutrino velocity measurement over a distance of 730 km. The OPERA neutrino experiment at the underground Gran Sasso Laboratory used an upgraded setup compared to th e 2011 measurements, improving the measurement time accuracy. An independent timing system based on the Resistive Plate Chambers was exploited providing a time accuracy of $sim$1 ns. Neutrino and anti-neutrino contributions were separated using the information provided by the OPERA magnetic spectrometers. The new analysis profited from the precision geodesy measurements of the neutrino baseline and of the CNGS/LNGS clock synchronization. The neutrino arrival time with respect to the one computed assuming the speed of light in vacuum is found to be $delta t_ u equiv TOF_c - TOF_ u= (0.6 pm 0.4 (stat.) pm 3.0 (syst.))$ ns and $delta t_{bar{ u}} equiv TOF_c - TOF_{bar{ u}} = (1.7 pm 1.4 (stat.) pm 3.1 (syst.))$ ns for $ u_{mu}$ and $bar{ u}_{mu}$, respectively. This corresponds to a limit on the muon neutrino velocity with respect to the speed of light of $-1.8 times 10^{-6} < (v_{ u}-c)/c < 2.3 times 10^{-6}$ at 90% C.L. This new measurement confirms with higher accuracy the revised OPERA result.
The MiniBooNE neutrino detector was designed and built to look for muon-neutrino to electron-neutrino oscillations in the mixing parameter space region where the LSND experiment reported a signal. The MiniBooNE experiment used a beam energy and basel ine that were an order of magnitude larger than those of LSND so that the backgrounds and systematic errors would be completely different. This paper provides a detailed description of the design, function, and performance of the MiniBooNE detector.
The CLEO III detector has recently commenced data taking at the Cornell electron Storage Ring (CESR). One important component of this detector is a 4 layer double-sided silicon tracker with 93% solid angle coverage. This detector ranges in size and n umber of readout channels between the LEP and LHC silicon detectors. In order to reach the detector performance goals of signal-to-noise ratios greater than 15:1 low noise front-end electronics together with highly regulated low noise power supplies were used. In this paper we describe the low-noise power supply system and associated monitoring and safety features used by the CLEO III silicon tracker.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا