ترغب بنشر مسار تعليمي؟ اضغط هنا

A new method for measuring the neutron lifetime using an in situ neutron detector

101   0   0.0 ( 0 )
 نشر من قبل Christopher Morris
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The neutron lifetime is important in understanding the production of light nuclei in the first minutes after the big bang and it provides basic information on the charged weak current of the standard model of particle physics. Two different methods have been used to measure the neutron lifetime: disappearance measurements using bottled ultracold neutrons and decay rate measurements using neutron beams. The best measurements using these two techniques give results that differ by nearly 4 standard deviations. In this paper we describe a new method for measuring surviving neutrons in neutron lifetime measurements using bottled ultracold neutrons that provides better characterization of systematic uncertainties and enables higher precision than previous measurement techniques. We present results obtained using our method.

قيم البحث

اقرأ أيضاً

116 - Wanchun Wei 2020
The puzzle remains in the large discrepancy between neutron lifetime measured by the two distinct experimental approaches -- counts of beta decays in a neutron beam and storage of ultracold neutrons in a potential trap, namely, the beam method versus the bottle method. In this paper, we propose a new experiment to measure the neutron lifetime in a cold neutron beam with a sensitivity goal of 0.1% or sub-1 second. The neutron beta decays will be counted in a superfluid helium-4 scintillation detector at 0.5 K, and the neutron flux will be simultaneously monitored by the helium-3 captures in the same volume. The cold neutron beam must be of wavelength $lambda>16.5$ A to eliminate scattering with superfluid helium. A new precise measurement of neutron lifetime with the beam method of unique inherent systematic effects will greatly advance in resolving the puzzle.
The neutron lifetime is one of the basic parameters in the weak interaction, and is used for predicting the light element abundance in the early universe. Our group developed a new setup to measure the lifetime with the goal precision of 0.1% at the polarized beam branch BL05 of MLF, J-PARC. The commissioning data was acquired in 2014 and 2015, and the first set of data to evaluate the lifetime in 2016, which is expected to yield a statistical uncertainty of O(1)%. This paper presents the current analysis results and the future plans to achieve our goal precision.
Ultracold neutron (UCN) storage measurements were made in a trap constructed from a 1.3 T Halbach Octupole PErmanent (HOPE) magnet array aligned vertically, using the TES-port of the PF2 source at the Institut Laue-Langevin. A mechanical UCN valve at the bottom of the trap was used for filling and emptying. This valve was covered with Fomblin grease to induce non-specular reflections and was used in combination with a movable polyethylene UCN remover inserted from the top for cleaning of above-threshold UCNs. Loss due to UCN depolarization was suppressed with a minimum 2 mT bias field. Without using the UCN remover, a total storage time constant of $(712 pm 19)$ s was observed; with the remover inserted for 80 s and used at either 80 cm or 65 cm from the bottom of the trap, time constants of $(824 pm 32)$ s and $(835 pm 36)$ s were observed. Combining the latter two values, a neutron lifetime of $tau_{rm n} = (887 pm 39)$ s is extracted after primarily correcting for losses at the UCN valve. The time constants of the UCN population during cleaning were observed and compared to calculations based on UCN kinetic theory as well as Monte-Carlo studies. These calculations are used to predict above-threshold populations of $sim 5%$, $sim 0.5%$ and $sim 10^{-12}%$ remaining after cleaning in the no remover, 80~cm remover and 65~cm remover measurements. Thus, by using a non-specular reflector covering the entire bottom of the trap and a remover at the top of the trap, we have established an effective cleaning procedure for removing a major systematic effect in high-precision $tau_{rm n}$ experiments with magnetically stored UCNs.
We present the status of current US experimental efforts to measure the lifetime of the free neutron by the beam and bottle methods. BBN nucleosynthesis models require accurate measurements with 1 second uncertainties, which are currently feasible. F or tests of physics beyond the standard model, future efforts will need to achieve uncertainties well below 1 second. We outline paths achieve both.
The neutron beta-decay lifetime plays an important role both in understanding weak interactions within the framework of the Standard Model and in theoretical predictions of the primordial abundance of 4He in Big Bang Nucleosynthesis. In previous work , we successfully demonstrated the trapping of ultracold neutrons (UCN) in a conservative potential magnetic trap. A major upgrade of the apparatus is nearing completion at the National Institute of Standards and Technology Center for Neutron Research (NCNR). In our approach, a beam of 0.89 nm neutrons is incident on a superfluid 4He target within the minimum field region of an Ioffe-type magnetic trap. A fraction of the neutrons is downscattered in the helium to energies <200 neV, and those in the appropriate spin state become trapped. The inverse process is suppressed by the low phonon density of helium at temperatures less than 200 mK, allowing the neutron to travel undisturbed. When the neutron decays the energetic electron ionizes the helium, producing scintillation light that is detected using photomultiplier tubes. Statistical limitations of the previous apparatus will be alleviated by significant increases in field strength and trap volume resulting in twenty times more trapped neutrons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا