ترغب بنشر مسار تعليمي؟ اضغط هنا

Comparisons for backward stochastic differential equations on Markov chains and related no-arbitrage conditions

591   0   0.0 ( 0 )
 نشر من قبل Samuel Cohen
 تاريخ النشر 2010
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

Most previous contributions to BSDEs, and the related theories of nonlinear expectation and dynamic risk measures, have been in the framework of continuous time diffusions or jump diffusions. Using solutions of BSDEs on spaces related to finite state, continuous time Markov chains, we develop a theory of nonlinear expectations in the spirit of [Dynamically consistent nonlinear evaluations and expectations (2005) Shandong Univ.]. We prove basic properties of these expectations and show their applications to dynamic risk measures on such spaces. In particular, we prove comparison theorems for scalar and vector valued solutions to BSDEs, and discuss arbitrage and risk measures in the scalar case.



قيم البحث

اقرأ أيضاً

We consider backward stochastic differential equations (BSDEs) related to finite state, continuous time Markov chains. We show that appropriate solutions exist for arbitrary terminal conditions, and are unique up to sets of measure zero. We do not re quire the generating functions to be monotonic, instead using only an appropriate Lipschitz continuity condition.
140 - Jun Sekine , Akihiro Tanaka 2020
The X-valuation adjustment (XVA) problem, which is a recent topic in mathematical finance, is considered and analyzed. First, the basic properties of backward stochastic differential equations (BSDEs) with a random horizon in a progressively enlarged filtration are reviewed. Next, the pricing/hedging problem for defaultable over-the-counter (OTC) derivative securities is described using such BSDEs. An explicit sufficient condition is given to ensure the non-existence of an arbitrage opportunity for both the seller and buyer of the derivative securities. Furthermore, an explicit pricing formula is presented in which XVA is interpreted as approximated correction terms of the theoretical fair price.
In [5] the authors obtained Mean-Field backward stochastic differential equations (BSDE) associated with a Mean-field stochastic differential equation (SDE) in a natural way as limit of some highly dimensional system of forward and backward SDEs, cor responding to a large number of ``particles (or ``agents). The objective of the present paper is to deepen the investigation of such Mean-Field BSDEs by studying them in a more general framework, with general driver, and to discuss comparison results for them. In a second step we are interested in partial differential equations (PDE) whose solutions can be stochastically interpreted in terms of Mean-Field BSDEs. For this we study a Mean-Field BSDE in a Markovian framework, associated with a Mean-Field forward equation. By combining classical BSDE methods, in particular that of ``backward semigroups introduced by Peng [14], with specific arguments for Mean-Field BSDEs we prove that this Mean-Field BSDE describes the viscosity solution of a nonlocal PDE. The uniqueness of this viscosity solution is obtained for the space of continuous functions with polynomial growth. With the help of an example it is shown that for the nonlocal PDEs associated to Mean-Field BSDEs one cannot expect to have uniqueness in a larger space of continuous functions.
164 - Shanjian Tang , Wenning Wei 2013
This paper is concerned with solution in H{o}lder spaces of the Cauchy problem for linear and semi-linear backward stochastic partial differential equations (BSPDEs) of super-parabolic type. The pair of unknown variables are viewed as deterministic s patial functionals which take values in Banach spaces of random (vector) processes. We define suitable functional H{o}lder spaces for them and give some inequalities among these H{o}lder norms. The existence, uniqueness as well as the regularity of solutions are proved for BSPDEs, which contain new assertions even on deterministic PDEs.
Modelling joint dynamics of liquid vanilla options is crucial for arbitrage-free pricing of illiquid derivatives and managing risks of option trade books. This paper develops a nonparametric model for the European options book respecting underlying f inancial constraints and while being practically implementable. We derive a state space for prices which are free from static (or model-independent) arbitrage and study the inference problem where a model is learnt from discrete time series data of stock and option prices. We use neural networks as function approximators for the drift and diffusion of the modelled SDE system, and impose constraints on the neural nets such that no-arbitrage conditions are preserved. In particular, we give methods to calibrate textit{neural SDE} models which are guaranteed to satisfy a set of linear inequalities. We validate our approach with numerical experiments using data generated from a Heston stochastic local volatility model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا