ﻻ يوجد ملخص باللغة العربية
We consider backward stochastic differential equations (BSDEs) related to finite state, continuous time Markov chains. We show that appropriate solutions exist for arbitrary terminal conditions, and are unique up to sets of measure zero. We do not require the generating functions to be monotonic, instead using only an appropriate Lipschitz continuity condition.
In this paper we discuss new types of differential equations which we call anticipated backward stochastic differential equations (anticipated BSDEs). In these equations the generator includes not only the values of solutions of the present but also
The BMO martingale theory is extensively used to study nonlinear multi-dimensional stochastic equations (SEs) in $cR^p$ ($pin [1, infty)$) and backward stochastic differential equations (BSDEs) in $cR^ptimes cH^p$ ($pin (1, infty)$) and in $cR^inftyt
This paper is concerned with the switching game of a one-dimensional backward stochastic differential equation (BSDE). The associated Bellman-Isaacs equation is a system of matrix-valued BSDEs living in a special unbounded convex domain with reflecti
Most previous contributions to BSDEs, and the related theories of nonlinear expectation and dynamic risk measures, have been in the framework of continuous time diffusions or jump diffusions. Using solutions of BSDEs on spaces related to finite state
The purpose of this note is to provide an existence result for the solution of fully coupled Forward Backward Stochastic Differential Equations (FBSDEs) of the mean field type. These equations occur in the study of mean field games and the optimal control of dynamics of the McKean Vlasov type.