ﻻ يوجد ملخص باللغة العربية
This paper is concerned with solution in H{o}lder spaces of the Cauchy problem for linear and semi-linear backward stochastic partial differential equations (BSPDEs) of super-parabolic type. The pair of unknown variables are viewed as deterministic spatial functionals which take values in Banach spaces of random (vector) processes. We define suitable functional H{o}lder spaces for them and give some inequalities among these H{o}lder norms. The existence, uniqueness as well as the regularity of solutions are proved for BSPDEs, which contain new assertions even on deterministic PDEs.
This paper is concerned with the quasi-linear reflected backward stochastic partial differential equation (RBSPDE for short). Basing on the theory of backward stochastic partial differential equation and the parabolic capacity and potential, we first
By using the technique of the Zvonkins transformation and the classical Khasminkiis time discretization method, we prove the averaging principle for slow-fast stochastic partial differential equations with bounded and H{o}lder continuous drift coeffi
In this work we study the long time behavior of nonlinear stochastic functional-differential equations in Hilbert spaces. In particular, we start with establishing the existence and uniqueness of mild solutions. We proceed with deriving a priory unif
Averaging is an important method to extract effective macroscopic dynamics from complex systems with slow modes and fast modes. This article derives an averaged equation for a class of stochastic partial differential equations without any Lipschitz a
The X-valuation adjustment (XVA) problem, which is a recent topic in mathematical finance, is considered and analyzed. First, the basic properties of backward stochastic differential equations (BSDEs) with a random horizon in a progressively enlarged