ترغب بنشر مسار تعليمي؟ اضغط هنا

Supersymmetry in Slow Motion

115   0   0.0 ( 0 )
 نشر من قبل Takemichi Okui
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We construct new theories of electroweak symmetry breaking that employ a combination of supersymmetry and discrete symmetries to stabilize the weak scale up to and beyond the energies probed by the LHC. These models exhibit conventional supersymmetric spectra but the fermion-sfermion-gaugino vertices are absent. This closes many conventional decay channels, thereby allowing several superpartners to be stable on collider time scales. This opens the door to the possibility of directly observing R-hadrons and three flavors of sleptons inside the LHC detectors.



قيم البحث

اقرأ أيضاً

We initiate the study of gravitational wave (GW) signals from first-order phase transitions in supersymmetry-breaking hidden sectors. Such phase transitions often occur along a pseudo-flat direction universally related to supersymmetry (SUSY) breakin g in hidden sectors that spontaneously break $R$-symmetry. The potential along this pseudo-flat direction imbues the phase transition with a number of novel properties, including a nucleation temperature well below the scale of heavy states (such that the temperature dependence is captured by the low-temperature expansion) and significant friction induced by the same heavy states as they pass through bubble walls. In low-energy SUSY-breaking hidden sectors, the frequency of the GW signal arising from such a phase transition is guaranteed to lie within the reach of future interferometers given existing cosmological constraints on the gravitino abundance. Once a mediation scheme is specified, the frequency of the GW peak correlates with the superpartner spectrum. Current bounds on supersymmetry are compatible with GW signals at future interferometers, while the observation of a GW signal from a SUSY-breaking hidden sector would imply superpartners within reach of future colliders.
Maximally Natural Supersymmetry, an unusual weak-scale supersymmetric extension of the Standard Model based upon the inherently higher-dimensional mechanism of Scherk-Schwarz supersymmetry breaking (SSSB), possesses remarkably good fine tuning given present LHC limits. Here we construct a version with precision $SU(2)_{rm L} times U(1)_{rm Y} $ unification: $sin^2 theta_W(M_Z) simeq 0.231$ is predicted to $pm 2%$ by unifying $SU(2)_{rm L} times U(1)_{rm Y} $ into a 5D $SU(3)_{rm EW}$ theory at a Kaluza-Klein scale of $1/R_5 sim 4.4,{rm TeV}$, where SSSB is simultaneously realised. Full unification with $SU(3)_{rm C}$ is accommodated by extending the 5D theory to a $N=4$ supersymmetric $SU(6)$ gauge theory on a 6D rectangular orbifold at $1/R_6 sim 40 ,{rm TeV}$. TeV-scale states beyond the SM include exotic charged fermions implied by $SU(3)_{rm EW}$ with masses lighter than $sim 1.2,{rm TeV}$, and squarks in the mass range $1.4,{rm TeV} - 2.3,{rm TeV}$, providing distinct signatures and discovery opportunities for LHC run II.
We explore calculable models with low-energy supersymmetry where the flavor hierarchy is generated by quark and lepton compositeness, and where the composites emerge from the same sector that dynamically breaks supersymmetry. The observed pattern of Standard Model fermion masses and mixings is obtained by identifying the various generations with composites of different dimension in the ultraviolet. These single-sector supersymmetry breaking models give rise to various spectra of soft masses which are, in many cases, quite distinct from what is commonly found in models of gauge or gravity mediation. In typical models which satisfy all flavor-changing neutral current constraints, both the first and second generation sparticles have masses of order 20 TeV, while the stop mass is near 1 TeV. In other cases, all sparticles obtain masses of order 1 TeV predominantly from gauge mediation, even though the first two generations are composite.
We present a model of supersymmetry breaking in which the contributions from gravity/modulus, anomaly, and gauge mediation are all comparable. We term this scenario deflected mirage mediation, which is a generalization of the KKLT-motivated mirage me diation scenario to include gauge mediated contributions. These contributions deflect the gaugino mass unification scale and alter the pattern of soft parameters at low energies. In some cases, this results in a gluino LSP and light stops; in other regions of parameter space, the LSP can be a well-tempered neutralino. We demonstrate explicitly that competitive gauge-mediated terms can naturally appear within phenomenological models based on the KKLT setup by addressing the stabilization of the gauge singlet field which is responsible for the masses of the messenger fields. For viable stabilization mechanisms, the relation between the gauge and anomaly contributions is identical in most cases to that of deflected anomaly mediation, despite the presence of the Kahler modulus. Turning to TeV scale phenomenology, we analyze the renormalization group evolution of the supersymmetry breaking terms and the resulting low energy mass spectra. The approach sets the stage for studies of such mixed scenarios of supersymmetry breaking at the LHC.
We study the scenario that conformal dynamics leads to metastable supersymmetry breaking vacua. At a high energy scale, the superpotential is not R-symmetric, and has a supersymmetric minimum. However, conformal dynamics suppresses several operators along renormalization group flow toward the infrared fixed point. Then we can find an approximately R-symmetric superpotential, which has a metastable supersymmetry breaking vacuum, and the supersymmetric vacuum moves far away from the metastable supersymmetry breaking vacuum. We show a 4D simple model. Furthermore, we can construct 5D models with the same behavior, because of the AdS/CFT dual.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا