ترغب بنشر مسار تعليمي؟ اضغط هنا

Metastable supersymmetry breaking vacua from conformal dynamics

151   0   0.0 ( 0 )
 نشر من قبل Hiroyuki Abe
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the scenario that conformal dynamics leads to metastable supersymmetry breaking vacua. At a high energy scale, the superpotential is not R-symmetric, and has a supersymmetric minimum. However, conformal dynamics suppresses several operators along renormalization group flow toward the infrared fixed point. Then we can find an approximately R-symmetric superpotential, which has a metastable supersymmetry breaking vacuum, and the supersymmetric vacuum moves far away from the metastable supersymmetry breaking vacuum. We show a 4D simple model. Furthermore, we can construct 5D models with the same behavior, because of the AdS/CFT dual.

قيم البحث

اقرأ أيضاً

In this paper we consider quiver gauge theories with fractional branes whose infrared dynamics removes the classical supersymmetric vacua (DSB branes). We show that addition of flavors to these theories (via additional non-compact branes) leads to lo cal meta-stable supersymmetry breaking minima, closely related to those of SQCD with massive flavors. We simplify the study of the one-loop lifting of the accidental classical flat directions by direct computation of the pseudomoduli masses via Feynman diagrams. This new approach allows to obtain analytic results for all these theories. This work extends the results for the $dP_1$ theory in hep-th/0607218. The new approach allows to generalize the computation to general examples of DSB branes, and for arbitrary values of the superpotential couplings.
We consider the metastable N=1 QCD model of Intriligator, Seiberg and Shih (ISS), deformed by adding a baryon term to the superpotential. This simple deformation causes the spontaneous breaking of the approximate R-symmetry of the metastable vacuum. We then gauge the flavour SU(5)_f and identify it with the parent gauge symmetry of the Standard Model (SM). This implements direct mediation of supersymmetry breaking without the need for an additional messenger sector. A reasonable choice of parameters leads to gaugino masses of the right order. Finally, we speculate that the entire ``ISS x SM model should be interpreted as a magnetic dual of an (unknown) asymptotically free theory.
We calculate the low energy effective action of massless and massive complex linear superfields coupled to a massive U(1) vector multiplet. Our calculations include superspace higher derivative corrections and therefore go beyond previous results. Am ong the superspace higher derivatives we find that terms which lead to a deformation of the auxiliary field potential and may break supersymmetry are also generated. We show that the supersymmetry breaking vacua can only be trusted if there exists a hierarchy between the higher order terms. A renormalization group analysis shows that generically a hierarchy is not generated by the quantum corrections.
We demonstrate that Dirac neutrino masses in the experimentally preferred range are generated within supersymmetric gauge extensions of the Standard Model with a generalized supersymmetry breaking sector. If the usual superpotential Yukawa couplings are forbidden by the additional gauge symmetry (such as a U(1)), effective Dirac mass terms involving the wrong Higgs field can arise either at tree level due to hard supersymmetry breaking fermion Yukawa couplings, or at one-loop due to nonanalytic or nonholomorphic soft supersymmetry breaking trilinear scalar couplings. As both of these operators are naturally suppressed in generic models of supersymmetry breaking, the resulting neutrino masses are naturally in the sub-eV range. The neutrino magnetic and electric dipole moments resulting from the radiative mechanism also vanish at one-loop order.
In the Intriligator-Seiberg-Shih model, we parametrize spontaneous breaking of $U(1)_R$ symmetry with two gauge singlets with R-charges 1 and --1. These singlets can play the role of the messengers. The messenger scale is dynamically generated, and h ence there is no hierarchy problem between the supersymmetry breaking scale and the messenger scale. In the gauge mediation scenario, supersymmetry breaking scale turns out to be around $mathcal{O}(10^6)textrm{GeV}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا