ﻻ يوجد ملخص باللغة العربية
Maximally Natural Supersymmetry, an unusual weak-scale supersymmetric extension of the Standard Model based upon the inherently higher-dimensional mechanism of Scherk-Schwarz supersymmetry breaking (SSSB), possesses remarkably good fine tuning given present LHC limits. Here we construct a version with precision $SU(2)_{rm L} times U(1)_{rm Y} $ unification: $sin^2 theta_W(M_Z) simeq 0.231$ is predicted to $pm 2%$ by unifying $SU(2)_{rm L} times U(1)_{rm Y} $ into a 5D $SU(3)_{rm EW}$ theory at a Kaluza-Klein scale of $1/R_5 sim 4.4,{rm TeV}$, where SSSB is simultaneously realised. Full unification with $SU(3)_{rm C}$ is accommodated by extending the 5D theory to a $N=4$ supersymmetric $SU(6)$ gauge theory on a 6D rectangular orbifold at $1/R_6 sim 40 ,{rm TeV}$. TeV-scale states beyond the SM include exotic charged fermions implied by $SU(3)_{rm EW}$ with masses lighter than $sim 1.2,{rm TeV}$, and squarks in the mass range $1.4,{rm TeV} - 2.3,{rm TeV}$, providing distinct signatures and discovery opportunities for LHC run II.
The realization that supersymmetry (SUSY), if softly broken at the weak scale, can stabilize the Higgs sector led many authors to explore the role it may play in particle physics. It was widely anticipated that superpartners would reveal themselves o
In the context of supersymmetry, the two-loop Barr-Zee diagrams which induce CP-violating electric dipole moment of electron due to superpartners simultaneously yield CP-conserving magnetic dipole moment of muon. In this paper, we derive the coherenc
Gluinos that result in classic large missing transverse momentum signatures at the LHC have been excluded by 2011 searches if they are lighter than around 800 GeV. This adds to the tension between experiment and supersymmetric solutions of the natura
Recent clarifications of naturalness in supersymmetry robustly require the presence of four light higgsinos with mass ~100-300 GeV while gluinos and (top)-squarks may lie in the multi-TeV range, possibly out of LHC reach. We project the high luminosi
We demonstrate that natural supersymmetry is readily realized in the framework of SU(4)_c times SU(2)_L times SU(2)_R with non-universal gaugino masses. Focusing on ameliorating the little hierarchy problem, we explore the parameter space of this mod