ترغب بنشر مسار تعليمي؟ اضغط هنا

The Baryogenesis Window in the MSSM

57   0   0.0 ( 0 )
 نشر من قبل Germano Nardini
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Electroweak baryogenesis provides an attractive explanation of the origin of the matter-antimatter asymmetry that relies on physics at the weak scale and thus it is testable at present and near future high-energy physics experiments. Although this scenario may not be realized within the Standard Model, it can be accommodated within the MSSM provided there are new CP-violating phases and the lightest stop mass is smaller than the top-quark mass. In this work we provide an evaluation of the values of the stop (m_{tilde t}) and Higgs (m_H) masses consistent with the requirements of electroweak baryogenesis based on an analysis that makes use of the renormalization group improved Higgs and stop potentials, and including the dominant two-loop effects at high temperature. We find an allowed window in the (m_{tilde t},m_H)-plane, consistent with all present experimental data, where there is a strongly first-order electroweak phase transition and where the electroweak vacuum is metastable but sufficiently long-lived. In particular we obtain absolute upper bounds on the Higgs and stop masses, m_Hlesssim 127 GeV and m_{tilde t}lesssim 120 GeV, implying that this scenario will be probed at the LHC.

قيم البحث

اقرأ أيضاً

In the minimal supersymmetric standard model (MSSM), a strongly first-order electroweak phase transition (EWPT) is only possible in a confined parameter region where one of the scalar top quarks is lighter than the top quark and the other one is as h eavy as the SUSY breaking scale. If the MSSM is enlarged to accommodate vector-like quarks and their superpartners, we find that the strongly first-order EWPT is possible without requiring light scalar top quark at the one-loop level, in the limit where the lightest scalar Higgs boson of the MSSM behaves like the Higgs boson of the standard model and the other Higgs bosons are all as heavy as the SUSY breaking scale. The strength of the first-order EWPT is found to be dependent on the mass of the lightest neutral Higgs boson and the mixing effects of the vector-like scalar quarks.
431 - S.J. Huber 2001
We discuss the generation of the baryon asymmetry by a strong first order electroweak phase transition in the early universe, particularly in the context of the MSSM. This requires a thorough numerical treatment of the bubble wall profile in the case of two Higgs fields. CP violating complex particle masses varying with the Higgs field in the wall are essential. Since in the MSSM there is no indication of spontaneous CP violation around the critical temperature (contrary to the NMSSM) we have to rely on standard explicit CP violation. Using the WKB approximation for particles in the plasma we are led to Boltzmann transport equations for the difference of left-handed particles and their CP conjugates. This asymmetry is finally transformed into a baryon asymmetry by out of equilibrium sphaleron transitions in the symmetric phase. We solve the transport equations and find a baryon asymmetry depending mostly on the CP violating phases and the wall velocity.
105 - Charanjit S. Aulakh 2015
The Minimal Supersymmetric SO(10) GUT has developed into a fully realistic theory in which not only are the gauge couplings unified but the known fermion spectrum and mixing matrices could fit accurately using the latitude introduced by inclusion of quantum corrections to the GUT-effective MSSM-SM matching conditions. The fits yield predictions about the nature of the sparticle spectrum on the basis of the required threshold corrections. This indicated a necessarily large value for $A_0$ in 2008 : well before Higgs discovery at 126 GeV made it a commonplace assumption. GUT scale threshold corrections to the normalization of the emergent effective MSSM Higgs ameliorate the long standing Susy GUT puzzle of fast dimension five operator mediated proton decay. Numerical investigation indicates that B-violation rates below or near the current experimental upper limits are feasible in fully realistic models. Our results imply that UV completion models with large numbers of fields, like Kaluza-Klein models or String Theory, must be able to compute threshold corrections to be considered quantitative theories and not just fables. Required improvements in the fitting procedure are discussed. A generalization of the NMSGUT by gauging the flavour symmetry of the kinetic terms,while retaining renormalizability and the successful MSGUT symmetry breaking patterns, may allow dynamical generation of the observed Yukawa structure of the MSSM via the spontaneous breaking of the full gauge symmetry down to the MSSM at the unification scale. Focus on the emergence of the MSSM Higgs from the multiple Higgs doublets in the GUT thus provides a crucial window to view the energetically remote UV dynamics specified in fully calculable and realistic MSGUTs.
We make use of the formalism developed in Ref. [1], and calculate the chargino mediated baryogenesis in the Minimal Supersymmetric Standard Model. The formalism makes use of a gradient expansion of the Kadanoff-Baym equations for mixing fermions. For illustrative purposes, we first discuss the semiclassical transport equations for mixing bosons in a space-time dependent Higgs background. To calculate the baryon asymmetry, we solve a standard set of diffusion equations, according to which the chargino asymmetry is transported to the top sector, where it biases sphaleron transitions. At the end we make a qualitative and quantitative comparison of our results with the existing work. We find that the production of the baryon asymmetry of the Universe by CP-violating currents in the chargino sector is strongly constrained by measurements of electric dipole moments.
100 - John McDonald , Osamu Seto 2008
One interpretation of proton stability is the existence of extra-flat directions of the MSSM, in particular $u^{c}u^{c}d^{c}e^{c}$ and $QQQL$, where the operators lifting the potential are suppressed by a mass scale $Lambda$ which is much larger than the Planck mass, $ Lambda gae 10^{26} GeV$. Using D-term hybrid inflation as an example, we show that such flat directions can serve as the inflaton in SUSY inflation models. The resulting model is a minimal version of D-term inflation which requires the smallest number of additional fields. In the case where $Q$-balls form from the extra-flat direction condensate after inflation, successful Affleck-Dine baryogenesis is possible if the suppression mass scale is $gae 10^{31}-10^{35} GeV$. In this case the reheating temperature from $Q$-ball decay is in the range $3-100 GeV$, while observable baryon isocurvature perturbations and non-thermal dark matter are possible. In the case of extra-flat directions with a large $t$ squark component, there no $Q$-ball formation and reheating is via conventional condensate decay. In this case the reheating temperature is in the range $1-100 TeV$, naturally evading thermal gravitino overproduction while allowing sphaleron erasure of any large B-L asymmetry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا