ترغب بنشر مسار تعليمي؟ اضغط هنا

MSSM Electroweak Baryogenesis and Flavour Mixing in Transport Equations

213   0   0.0 ( 0 )
 نشر من قبل Thomas Konstandin
 تاريخ النشر 2005
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We make use of the formalism developed in Ref. [1], and calculate the chargino mediated baryogenesis in the Minimal Supersymmetric Standard Model. The formalism makes use of a gradient expansion of the Kadanoff-Baym equations for mixing fermions. For illustrative purposes, we first discuss the semiclassical transport equations for mixing bosons in a space-time dependent Higgs background. To calculate the baryon asymmetry, we solve a standard set of diffusion equations, according to which the chargino asymmetry is transported to the top sector, where it biases sphaleron transitions. At the end we make a qualitative and quantitative comparison of our results with the existing work. We find that the production of the baryon asymmetry of the Universe by CP-violating currents in the chargino sector is strongly constrained by measurements of electric dipole moments.



قيم البحث

اقرأ أيضاً

431 - S.J. Huber 2001
We discuss the generation of the baryon asymmetry by a strong first order electroweak phase transition in the early universe, particularly in the context of the MSSM. This requires a thorough numerical treatment of the bubble wall profile in the case of two Higgs fields. CP violating complex particle masses varying with the Higgs field in the wall are essential. Since in the MSSM there is no indication of spontaneous CP violation around the critical temperature (contrary to the NMSSM) we have to rely on standard explicit CP violation. Using the WKB approximation for particles in the plasma we are led to Boltzmann transport equations for the difference of left-handed particles and their CP conjugates. This asymmetry is finally transformed into a baryon asymmetry by out of equilibrium sphaleron transitions in the symmetric phase. We solve the transport equations and find a baryon asymmetry depending mostly on the CP violating phases and the wall velocity.
In the minimal supersymmetric standard model (MSSM), a strongly first-order electroweak phase transition (EWPT) is only possible in a confined parameter region where one of the scalar top quarks is lighter than the top quark and the other one is as h eavy as the SUSY breaking scale. If the MSSM is enlarged to accommodate vector-like quarks and their superpartners, we find that the strongly first-order EWPT is possible without requiring light scalar top quark at the one-loop level, in the limit where the lightest scalar Higgs boson of the MSSM behaves like the Higgs boson of the standard model and the other Higgs bosons are all as heavy as the SUSY breaking scale. The strength of the first-order EWPT is found to be dependent on the mass of the lightest neutral Higgs boson and the mixing effects of the vector-like scalar quarks.
78 - George W.-S. Hou 2017
We study electroweak baryogenesis driven by the top quark in two Higgs doublet model that allows flavor-changing neutral Higgs couplings. Taking Higgs sector couplings and the additional top Yukawa coupling $rho_{tt}$ to be $mathcal{O}$(1), one natur ally has first order electroweak phase transition and sufficient $CP$ violation to fuel the cosmic baryon asymmetry. Even if $rho_{tt}$ vanishes, the favor-changing coupling $rho_{tc}$ can still achieve baryogenesis. Phenomenological consequences such as $tto ch$, $tau to mugamma$, electron electric dipole moment, $htogammagamma$, and $hhh$ coupling are discussed. The extra scalars $H^0$, $A^0$ and $H^pm$ are sub-TeV in mass, and can be searched for at the LHC.
We present an extensive study of non-minimally flavour violating (NMFV) terms in the Lagrangian of the Minimal Supersymmetric Standard Model (MSSM). We impose a variety of theoretical and experimental constraints and perform a detailed scan of the pa rameter space by means of a Markov Chain Monte-Carlo (MCMC) setup. This represents the first study of several non-zero flavour-violating elements within the MSSM. We present the results of the MCMC scan with a special focus on the flavour-violating parameters. Based on these results, we define benchmark scenarios for future studies of NMFV effects at the LHC.
We investigate if the CP violation necessary for successful electroweak baryogenesis may be sourced by the neutrino Yukawa couplings. In particular, we consider an electroweak scale Seesaw realization with sizable Yukawas where the new neutrino singl ets form (pseudo)-Dirac pairs, as in the linear or inverse Seesaw variants. We find that the baryon asymmetry obtained strongly depends on how the neutrino masses vary within the bubble walls. Moreover, we also find that flavour effects critically impact the final asymmetry obtained and that, taking them into account, the observed value may be obtained in some regions of the parameter space. This source of CP violation naturally avoids the strong constraints from electric dipole moments and links the origin of the baryon asymmetry of the Universe with the mechanism underlying neutrino masses. Interestingly, the mixing of the active and heavy neutrinos needs to be sizable and could be probed at the LHC or future collider experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا