ترغب بنشر مسار تعليمي؟ اضغط هنا

Unparticle effects in rare (t -> c g g) decay

135   0   0.0 ( 0 )
 نشر من قبل Mustafa Savci
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Rare (t -> c g g) decay can only appear at loop level in the Standard Model (SM), and naturally they are strongly suppressed. These flavor changing decays induced by the mediation of spin-0 and spin-2 unparticles, can appear at tree level in unparticle physics. In this work the virtual effects of unparticle physics in the flavor-changing (t -> c g g) decay is studied. Using the SM result for the branching ratio of the (t -> c g g) decay, the parameter space of d_U and Lambda_U, where the branching ratio of this decay exceeds the one predicted by the SM, is obtained. Measurement of the branching ratio larger than 10^(-9) can give valuable information for establishing unparticle physics.

قيم البحث

اقرأ أيضاً

The generic unparticle propagator may be modified in two ways. Breaking the conformal symmetry effectively adds a mass term to the propagator, while considering vacuum polarization corrections adds a width-like term. Both of these modifications resul t naturally from the coupling of the unparticle to standard model (SM) fields. We explore how these modifications to the propagator affect the calculation of the lepton anomalous magnetic moment using an integral approximation of the propagator that is accurate for $dlesssim1.5$, where $d$ is the unparticle dimension. We find that for this range of $d$ and various values of the conformal breaking scale $mu$, the value of $g-2$ calculated when allowing various SM fermions to run in the unparticle self-energy loops does not significantly deviate from the value of $g-2$ when the width term is ignored. We also investigate the limits on a characteristic mass scale for the unparticle sector as a function of $mu$ and $d$.
In this work we study the flavor changing neutral current(FCNC) decays of the top quark, $tto cgamma$ and $tto c g$. The Standard Model, predictions for the branching ratios of these decays are about $sim 5times 10^{-14}$, and $sim 1times 10^{-12}$, respectively. The recent study presented by the ATLAS Collaboration gives a sensitivity on these branching ratios about $sim 10^{-5}$ at $%95$ C.L. The parameter space of $lambda$, $Lambda$, and $d$ where the branching ratios of $tto cgamma$ and $tto c g$ decays exceed these predictions is obtained.
We study the decay width and CP-asymmetry of the inclusive process b--> s g g (g denotes gluon) in the three and two Higgs doublet models with complex Yukawa couplings. We analyse the dependencies of the differential decay width and CP-asymmetry to t he s- quark energy E_s and CP violating parameter theta. We observe that there exist a considerable enhancement in the decay width and CP asymmetry is at the order of 10^{-2}. Further, it is possible to predict the sign of C_7^{eff} using the CP asymmetry.
The rare top decay t-> c l+l-, which involves flavor violation, is studied as a possible probe of new physics. This decay is analyzed with the simplest Standard Model extensions with additional gauge symmetry formalism. The considered extension is th e Left-Right Symmetric Model, including a new neutral gauge boson Z that allows to obtain the decay at tree level through Flavor Changing Neutral Currents (FCNC) couplings. The neutral gauge boson couplings are considered diagonal but family non-universal in order to induce these FCNC. We find the $BR(t-> c l+l-)~10^{-13} for a range 1 TeV < M_{Z} < 3 TeV.
We study gluonic effects (gluon condensation effects) on the hadronic leading order (HLO) contributions to the anomalous magnetic moment (g-2) of leptons, based on a holographic model having explicit gluonic mode introduced for consistency with the o perator product expansion of QCD. We find gluonic enhancement of HLO contributions to the muon g-2 by about 6%, which nicely fills in the gap between the holographic estimate without gluonic effects and the phenomenological one using the experimental data as inputs. Similar calculations including the gluonic effects for the electron and the tau lepton g-2 are also carried out in good agreement with the phenomenological estimates. We then apply our holographic estimate to the Walking Technicolor (WTC) where large techni-gluonic effects were shown to be vital for the Technidilaton, (pseudo) Nambu-Goldstone boson of the (approximate) scale symmetry of WTC, to be naturally as light as 125 GeV. It is shown that the value of the techni-HLO contributions to the muon g-2 is 10-100 times enhanced by inclusion of the same amount of the gluonic effects as that realizing the 125 GeV Technidilaton, although such an enhanced techni-HLO contribution is still negligibly small compared with the current deviation of the Standard Model prediction of the muon g-2 from the experiments. The techni-HLO contributions to the tau lepton g-2 is also discussed, suggesting a possible phenomenological relevance to be tested by the future experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا