ﻻ يوجد ملخص باللغة العربية
Rare (t -> c g g) decay can only appear at loop level in the Standard Model (SM), and naturally they are strongly suppressed. These flavor changing decays induced by the mediation of spin-0 and spin-2 unparticles, can appear at tree level in unparticle physics. In this work the virtual effects of unparticle physics in the flavor-changing (t -> c g g) decay is studied. Using the SM result for the branching ratio of the (t -> c g g) decay, the parameter space of d_U and Lambda_U, where the branching ratio of this decay exceeds the one predicted by the SM, is obtained. Measurement of the branching ratio larger than 10^(-9) can give valuable information for establishing unparticle physics.
The generic unparticle propagator may be modified in two ways. Breaking the conformal symmetry effectively adds a mass term to the propagator, while considering vacuum polarization corrections adds a width-like term. Both of these modifications resul
In this work we study the flavor changing neutral current(FCNC) decays of the top quark, $tto cgamma$ and $tto c g$. The Standard Model, predictions for the branching ratios of these decays are about $sim 5times 10^{-14}$, and $sim 1times 10^{-12}$,
We study the decay width and CP-asymmetry of the inclusive process b--> s g g (g denotes gluon) in the three and two Higgs doublet models with complex Yukawa couplings. We analyse the dependencies of the differential decay width and CP-asymmetry to t
The rare top decay t-> c l+l-, which involves flavor violation, is studied as a possible probe of new physics. This decay is analyzed with the simplest Standard Model extensions with additional gauge symmetry formalism. The considered extension is th
We study gluonic effects (gluon condensation effects) on the hadronic leading order (HLO) contributions to the anomalous magnetic moment (g-2) of leptons, based on a holographic model having explicit gluonic mode introduced for consistency with the o