ﻻ يوجد ملخص باللغة العربية
In this paper, we show a connection between a certain online low-congestion routing problem and an online prediction of graph labeling. More specifically, we prove that if there exists a routing scheme that guarantees a congestion of $alpha$ on any edge, there exists an online prediction algorithm with mistake bound $alpha$ times the cut size, which is the size of the cut induced by the label partitioning of graph vertices. With previous known bound of $O(log n)$ for $alpha$ for the routing problem on trees with $n$ vertices, we obtain an improved prediction algorithm for graphs with high effective resistance. In contrast to previous approaches that move the graph problem into problems in vector space using graph Laplacian and rely on the analysis of the perceptron algorithm, our proof are purely combinatorial. Further more, our approach directly generalizes to the case where labels are not binary.
For online matching with the line metric, we present a lower bound of $Omega(log n)$ on the approximation ratio of any online (possibly randomized) algorithm. This beats the previous best lower bound of $Omega(sqrt{log n})$ and matches the known upper bound of $O(log n)$.
We consider the file maintenance problem (also called the online labeling problem) in which n integer items from the set {1,...,r} are to be stored in an array of size m >= n. The items are presented sequentially in an arbitrary order, and must be st
The general adwords problem has remained largely unresolved. We define a subcase called {em $k$-TYPICAL}, $k in Zplus$, as follows: the total budget of all the bidders is sufficient to buy $k$ bids for each bidder. This seems a reasonable assumption
Motivated by the use of high speed circuit switches in large scale data centers, we consider the problem of circuit switch scheduling. In this problem we are given demands between pairs of servers and the goal is to schedule at every time step a matc
In the online labeling problem with parameters n and m we are presented with a sequence of n keys from a totally ordered universe U and must assign each arriving key a label from the label set {1,2,...,m} so that the order of labels (strictly) respec