ترغب بنشر مسار تعليمي؟ اضغط هنا

Tight lower bounds for online labeling problem

127   0   0.0 ( 0 )
 نشر من قبل Jan Bul\\'anek
 تاريخ النشر 2011
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the file maintenance problem (also called the online labeling problem) in which n integer items from the set {1,...,r} are to be stored in an array of size m >= n. The items are presented sequentially in an arbitrary order, and must be stored in the array in sorted order (but not necessarily in consecutive locations in the array). Each new item must be stored in the array before the next item is received. If r<=m then we can simply store item j in location j but if r>m then we may have to shift the location of stored items to make space for a newly arrived item. The algorithm is charged each time an item is stored in the array, or moved to a new location. The goal is to minimize the total number of such moves done by the algorithm. This problem is non-trivial when n=<m<r. In the case that m=Cn for some C>1, algorithms for this problem with cost O(log(n)^2) per item have been given [IKR81, Wil92, BCD+02]. When m=n, algorithms with cost O(log(n)^3) per item were given [Zha93, BS07]. In this paper we prove lower bounds that show that these algorithms are optimal, up to constant factors. Previously, the only lower bound known for this range of parameters was a lower bound of Omega(log(n)^2) for the restricted class of smooth algorithms [DSZ05a, Zha93]. We also provide an algorithm for the sparse case: If the number of items is polylogarithmic in the array size then the problem can be solved in amortized constant time per item.



قيم البحث

اقرأ أيضاً

Vizings celebrated theorem asserts that any graph of maximum degree $Delta$ admits an edge coloring using at most $Delta+1$ colors. In contrast, Bar-Noy, Naor and Motwani showed over a quarter century that the trivial greedy algorithm, which uses $2D elta-1$ colors, is optimal among online algorithms. Their lower bound has a caveat, however: it only applies to low-degree graphs, with $Delta=O(log n)$, and they conjectured the existence of online algorithms using $Delta(1+o(1))$ colors for $Delta=omega(log n)$. Progress towards resolving this conjecture was only made under stochastic arrivals (Aggarwal et al., FOCS03 and Bahmani et al., SODA10). We resolve the above conjecture for emph{adversarial} vertex arrivals in bipartite graphs, for which we present a $(1+o(1))Delta$-edge-coloring algorithm for $Delta=omega(log n)$ known a priori. Surprisingly, if $Delta$ is not known ahead of time, we show that no $big(frac{e}{e-1} - Omega(1) big) Delta$-edge-coloring algorithm exists. We then provide an optimal, $big(frac{e}{e-1}+o(1)big)Delta$-edge-coloring algorithm for unknown $Delta=omega(log n)$. Key to our results, and of possible independent interest, is a novel fractional relaxation for edge coloring, for which we present optimal fractional online algorithms and a near-lossless online rounding scheme, yielding our optimal randomized algorithms.
We consider the following online optimization problem. We are given a graph $G$ and each vertex of the graph is assigned to one of $ell$ servers, where servers have capacity $k$ and we assume that the graph has $ell cdot k$ vertices. Initially, $G$ d oes not contain any edges and then the edges of $G$ are revealed one-by-one. The goal is to design an online algorithm $operatorname{ONL}$, which always places the connected components induced by the revealed edges on the same server and never exceeds the server capacities by more than $varepsilon k$ for constant $varepsilon>0$. Whenever $operatorname{ONL}$ learns about a new edge, the algorithm is allowed to move vertices from one server to another. Its objective is to minimize the number of vertex moves. More specifically, $operatorname{ONL}$ should minimize the competitive ratio: the total cost $operatorname{ONL}$ incurs compared to an optimal offline algorithm $operatorname{OPT}$. Our main contribution is a polynomial-time randomized algorithm, that is asymptotically optimal: we derive an upper bound of $O(log ell + log k)$ on its competitive ratio and show that no randomized online algorithm can achieve a competitive ratio of less than $Omega(log ell + log k)$. We also settle the open problem of the achievable competitive ratio by deterministic online algorithms, by deriving a competitive ratio of $Theta(ell lg k)$; to this end, we present an improved lower bound as well as a deterministic polynomial-time online algorithm. Our algorithms rely on a novel technique which combines efficient integer programming with a combinatorial approach for maintaining ILP solutions. We believe this technique is of independent interest and will find further applications in the future.
We prove a tight lower bound on the asymptotic performance ratio $rho$ of the bounded space online $d$-hypercube bin packing problem, solving an open question raised in 2005. In the classic $d$-hypercube bin packing problem, we are given a sequence o f $d$-dimensional hypercubes and we have an unlimited number of bins, each of which is a $d$-dimensional unit hypercube. The goal is to pack (orthogonally) the given hypercubes into the minimum possible number of bins, in such a way that no two hypercubes in the same bin overlap. The bounded space online $d$-hypercube bin packing problem is a variant of the $d$-hypercube bin packing problem, in which the hypercubes arrive online and each one must be packed in an open bin without the knowledge of the next hypercubes. Moreover, at each moment, only a constant number of open bins are allowed (whenever a new bin is used, it is considered open, and it remains so until it is considered closed, in which case, it is not allowed to accept new hypercubes). Epstein and van Stee [SIAM J. Comput. 35 (2005), no. 2, 431-448] showed that $rho$ is $Omega(log d)$ and $O(d/log d)$, and conjectured that it is $Theta(log d)$. We show that $rho$ is in fact $Theta(d/log d)$. To obtain this result, we elaborate on some ideas presented by those authors, and go one step further showing how to obtain better (offline) packings of certain special instances for which one knows how many bins any bounded space algorithm has to use. Our main contribution establishes the existence of such packings, for large enough $d$, using probabilistic arguments. Such packings also lead to lower bounds for the prices of anarchy of the selfish $d$-hypercube bin packing game. We present a lower bound of $Omega(d/log d)$ for the pure price of anarchy of this game, and we also give a lower bound of $Omega(log d)$ for its strong price of anarchy.
We show tight bounds for online Hamming distance computation in the cell-probe model with word size w. The task is to output the Hamming distance between a fixed string of length n and the last n symbols of a stream. We give a lower bound of Omega((d /w)*log n) time on average per output, where d is the number of bits needed to represent an input symbol. We argue that this bound is tight within the model. The lower bound holds under randomisation and amortisation.
An assignment of colours to the vertices of a graph is stable if any two vertices of the same colour have identically coloured neighbourhoods. The goal of colour refinement is to find a stable colouring that uses a minimum number of colours. This is a widely used subroutine for graph isomorphism testing algorithms, since any automorphism needs to be colour preserving. We give an $O((m+n)log n)$ algorithm for finding a canonical version of such a stable colouring, on graphs with $n$ vertices and $m$ edges. We show that no faster algorithm is possible, under some modest assumptions about the type of algorithm, which captures all known colour refinement algorithms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا