ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Density Fluctuations in Classical Liquids

47   0   0.0 ( 0 )
 نشر من قبل Larry Ford
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the density fluctuations of a fluid due to zero point motion. These can be regarded as density fluctuations in the phonon vacuum state. We assume a linear dispersion relation with a fixed speed of sound and calculate the density correlation function. We note that this function has the same form as the correlation function for the time derivative of a relativistic massless scalar field, but with the speed of light replaced by the speed of sound. As a result, the study of density fluctuations in a fluid can be a useful analog model for better understanding fluctuations in relativistic quantum field theory. We next calculate the differential cross section for light scattering by the zero point density fluctuations, and find a result proportional to the fifth power of the light frequency. This can be understood as the product of fourth power dependence of the usual Rayleigh cross section with the linear frequency dependence of the spectrum of zero point density fluctuations. We give some estimates of the relative magnitude of this effect compared to the scattering by thermal density fluctuations, and find that it can be of order 0.5% for water at room temperature and optical frequencies. This relative magnitude is proportional to frequency and inversely proportional to temperature. Although the scattering by zero point density fluctuation is small, it may be observable.

قيم البحث

اقرأ أيضاً

We add quantum fluctuations to a classical Hamiltonian model with synchronized period doubling in the thermodynamic limit, replacing the $N$ classical interacting angular momenta with quantum spins of size $l$. The full permutation symmetry of the Ha miltonian allows a mapping to a bosonic model and the application of exact diagonalization for quite large system size. {In the thermodynamic limit $Ntoinfty$ the model is described by a system of Gross-Pitaevski equations whose classical-chaos properties closely mirror the finite-$N$ quantum chaos.} For $Ntoinfty$, and $l$ finite, Rabi oscillations mark the absence of persistent period doubling, which is recovered for $ltoinfty$ with Rabi-oscillation frequency tending exponentially to 0. For the chosen initial conditions, we can represent this model in terms of Pauli matrices and apply the discrete truncated Wigner approximation. For finite $l$ this approximation reproduces no Rabi oscillations but correctly predicts the absence of period doubling. Quantitative agreement is recovered in the classical $ltoinfty$ limit.
47 - Peter B. Weichman 2020
Quantum computational approaches to some classic target identification and localization algorithms, especially for radar images, are investigated, and are found to raise a number of quantum statistics and quantum measurement issues with much broader applicability. Such algorithms are computationally intensive, involving coherent processing of large sensor data sets in order to extract a small number of low profile targets from a cluttered background. Target enhancement is accomplished through accurate statistical characterization of the environment, followed by optimal identification of statistical outliers. The key result of the work is that the environmental covariance matrix estimation and manipulation at the heart of the statistical analysis actually enables a highly efficient quantum implementation. The algorithm is inspired by recent approaches to quantum machine learning, but requires significant extensions, including previously overlooked `quantum analog--digital conversion steps (which are found to substantially increase the required number of qubits), `quantum statistical generalization of the classic phase estimation and Grover search algorithms, and careful consideration of projected measurement operations. Application regimes where quantum efficiencies could enable significant overall algorithm speedup are identified. Key possible bottlenecks, such as data loading and conversion, are identified as well.
This paper establishes the applicability of density functional theory methods to quantum computing systems. We show that ground-state and time-dependent density functional theory can be applied to quantum computing systems by proving the Hohenberg-Ko hn and Runge-Gross theorems for a fermionic representation of an N qubit system. As a first demonstration of this approach, time-dependent density functional theory is used to determine the minimum energy gap Delta(N) arising when the quantum adiabatic evolution algorithm is used to solve instances of the NP-Complete problem MAXCUT. It is known that the computational efficiency of this algorithm is largely determined by the large-N scaling behavior of Delta(N), and so determining this behavior is of fundamental significance. As density functional theory has been used to study quantum systems with N ~ 1000 interacting degrees of freedom, the approach introduced in this paper raises the realistic prospect of evaluating the gap Delta(N) for systems with N ~ 1000 qubits. Although the calculation of Delta(N) serves to illustrate how density functional theory methods can be applied to problems in quantum computing, the approach has a much broader range and shows promise as a means for determining the properties of very large quantum computing systems.
We introduce fractal liquids by generalizing classical liquids of integer dimensions $d = 1, 2, 3$ to a fractal dimension $d_f$. The particles composing the liquid are fractal objects and their configuration space is also fractal, with the same non-i nteger dimension. Realizations of our generic model system include microphase separated binary liquids in porous media, and highly branched liquid droplets confined to a fractal polymer backbone in a gel. Here we study the thermodynamics and pair correlations of fractal liquids by computer simulation and semi-analytical statistical mechanics. Our results are based on a model where fractal hard spheres move on a near-critical percolating lattice cluster. The predictions of the fractal Percus-Yevick liquid integral equation compare well with our simulation results.
We investigate the limits of effectiveness of classical spin simulations for predicting free induction decays (FIDs) measured by solid-state nuclear magnetic resonance (NMR) on systems of quantum nuclear spins. The specific limits considered are asso ciated with the range of interaction, the size of individual quantum spins and the long-time behavior of the FID signals. We compare FIDs measured or computed for lattices of quantum spins (mainly spins 1/2) with the FIDs computed for the corresponding lattices of classical spins. Several cases of excellent quantitative agreement between quantum and classical FIDs are reported along with the cases of gradually decreasing quality of the agreement. We formulate semi-empirical criteria defining the situations, when classical simulations are expected to accurately reproduce quantum FIDs. Our findings indicate that classical simulations may be a quantitatively accurate tool of first principles calculations for a broad class of macroscopic systems, where individual quantum microscopic degrees of freedom are far from the classical limit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا