ﻻ يوجد ملخص باللغة العربية
This paper establishes the applicability of density functional theory methods to quantum computing systems. We show that ground-state and time-dependent density functional theory can be applied to quantum computing systems by proving the Hohenberg-Kohn and Runge-Gross theorems for a fermionic representation of an N qubit system. As a first demonstration of this approach, time-dependent density functional theory is used to determine the minimum energy gap Delta(N) arising when the quantum adiabatic evolution algorithm is used to solve instances of the NP-Complete problem MAXCUT. It is known that the computational efficiency of this algorithm is largely determined by the large-N scaling behavior of Delta(N), and so determining this behavior is of fundamental significance. As density functional theory has been used to study quantum systems with N ~ 1000 interacting degrees of freedom, the approach introduced in this paper raises the realistic prospect of evaluating the gap Delta(N) for systems with N ~ 1000 qubits. Although the calculation of Delta(N) serves to illustrate how density functional theory methods can be applied to problems in quantum computing, the approach has a much broader range and shows promise as a means for determining the properties of very large quantum computing systems.
Time-Dependent Density Functional Theory (TDDFT) has recently been extended to describe many-body open quantum systems (OQS) evolving under non-unitary dynamics according to a quantum master equation. In the master equation approach, electronic excit
It is well known that the quantum Zeno effect can protect specific quantum states from decoherence by using projective measurements. Here we combine the theory of weak measurements with stabilizer quantum error correction and detection codes. We deri
Based on a generalization of Hohenberg-Kohns theorem, we propose a ground state theory for bosonic quantum systems. Since it involves the one-particle reduced density matrix $gamma$ as a natural variable but still recovers quantum correlations in an
Transport through an Anderson junction (two macroscopic electrodes coupled to an Anderson impurity) is dominated by a Kondo peak in the spectral function at zero temperature. The exact single-particle Kohn-Sham potential of density functional theory
We show that braidings of the metaplectic anyons $X_epsilon$ in $SO(3)_2=SU(2)_4$ with their total charge equal to the metaplectic mode $Y$ supplemented with measurements of the total charge of two metaplectic anyons are universal for quantum computa