ترغب بنشر مسار تعليمي؟ اضغط هنا

Atomic and electronic structure transformations of silver nanoparticles under rapid cooling conditions

85   0   0.0 ( 0 )
 نشر من قبل Justo Rojas
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The structural evolution and dynamics of silver nanodrops Ag${}_{2896}$ (4.4 nm in diameter) during rapid cooling conditions has been studied by means of molecular dynamics simulations and electronic density of state calculations. The interaction of silver atoms is modeled by a tight-binding semiempirical interatomic potential proposed by Cleri and Rosato. The pair correlation functions and the pair analysis technique is applied to reveal the structural transition in the process of solidification. It is shown that Ag nanoparticles evolve into different nanostructures under different cooling processes. At a cooling rate of $1.5625times10^{13} Ks^{-1}$ the nanoparticles preserve an amorphous like structure containing a large amount of 1551 and 1541 pairs which correspond to the icosahedral symmetry. For a lower cooling rate ($1.5625times10^{12} Ks^{-1}$), the nanoparticles transform into a crystal-like structure consisting mainly of 1421 and 1422 pairs which correspond to the fcc and hcp structures, respectively. The variations of the electronic density of states for the differently cooled nanoparticles are small but in correspondence with the structural changes.

قيم البحث

اقرأ أيضاً

73 - V. Rodrigues 2002
We have analyzed the atomic arrangements and quantum conductance of silver nanowires generated by mechanical elongation. The surface properties of Ag induce unexpected structural properties, as for example, predominance of high aspect ratio rod-like wires. The structural behavior was used to understand the Ag quantum conductance data and the proposed correlation was confirmed by means of theoretical calculations. These results emphasize that the conductance of metal point contacts is determined by the preferred atomic structures and, that atomistic descriptions are essential to interpret the quantum transport behavior of metal nanostructures.
Results obtained from the optical absorption and photoluminescence (PL) spectroscopy experiments have shown the formation of excitons in the silver-exchanged glass samples. These findings are reported here for the first time. Further, we investigate the dramatic changes in the photoemission properties of the silver-exchanged glass samples as a function of postannealing temperature. Observed changes are thought to be due to the structural rearrangements of silver and oxygen bonding during the heat treatments of the glass matrix. In fact, photoelectron spectroscopy does reveal these chemical transformations of silver-exchanged soda glass samples caused by the thermal effects of annealing in a high vacuum atmosphere. An important correlation between temperature-induced changes of the PL intensity and thermal growth of the silver nanoparticles has been established in this Letter through precise spectroscopic studies.
The silver-fluorine phase diagram has been scrutinized as a function of external pressure using theoretical methods. Our results indicate that two novel stoichiometries containing Ag+ and Ag2+ cations (Ag3F4 and Ag2F3) are thermodynamically stable at ambient and low pressure. Both are computed to be magnetic semiconductors at ambient pressure conditions. For Ag2F5, containing both Ag2+ and Ag3+, we find that strong 1D antiferromagnetic coupling is retained throughout the pressure-induced phase transition sequence up to 65 GPa. Our calculations show that throughout the entire pressure range of their stability the mixed valence fluorides preserve a finite band gap at the Fermi level. We also confirm the possibility of synthesizing AgF4 as a paramagnetic compound at high pressure. Our results indicate that this compound is metallic in its thermodynamic stability region. Finally, we present general considerations on the thermodynamic stability of mixed valence compounds of silver at high pressure.
We have studied the effect of thermal effects on the structural and transport response of Ag atomic-size nanowires generated by mechanical elongation. Our study involves both time-resolved atomic resolution transmission electron microscopy imaging an d quantum conductance measurement using an ultra-high-vacuum mechanically controllable break junction. We have observed drastic changes in conductance and structural properties of Ag nanowires generated at different temperatures (150 and 300 K). By combining electron microscopy images, electronic transport measurements and quantum transport calculations, we have been able to obtain a consistent correlation between the conductance and structural properties of Ag NWs. In particular, our study has revealed the formation of metastable rectangular rod-like Ag wire (3/3) along the (001) crystallographic direction, whose formation is enhanced. These results illustrate the high complexity of analyzing structural and quantum conductance behaviour of metal atomic-size wires; also, they reveal that it is extremely difficult to compare NW conductance experiments performed at different temperatures due to the fundamental modifications of the mechanical behavior.
Developing characterization techniques and analysis methods adapted to the investigation of nanoparticles (NPs) is of fundamental importance considering the role of these materials in many fields of research. The study of actinide based NPs, despite their environmental relevance, is still underdeveloped compared to that of NPs based on stable and lighter elements. We present here an investigation of ThO2 NPs performed with High-Energy Resolution Fluorescence Detected (HERFD) X-ray Absorption Near-Edge Structure (XANES) and with ab initio XANES simulations. The first post-edge feature of Th L3 edge HERFD XANES disappears in small NPs and simulations considering non-relaxed structural models reproduce the trends observed in experimental data. Inspection of the simulations from Th atoms in the core and on the surface of the NP indeed demonstrates that the the first post-edge feature is very sensitive to the lowering of the number of coordinating atoms and therefore to the more exposed Th atoms at the surface of the NP. The sensitivity of the L3 edge HERFD XANES to low coordinated atoms at the surface stems from the hybridization of the d-Density of States (DOS) of Th with both O and Th neighboring atoms. This may be a common feature to other oxide systems that can be exploited to investigate surface interactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا