ترغب بنشر مسار تعليمي؟ اضغط هنا

Fluorides of silver under large compression

135   0   0.0 ( 0 )
 نشر من قبل Dominik Kurzyd{\\l}owski
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The silver-fluorine phase diagram has been scrutinized as a function of external pressure using theoretical methods. Our results indicate that two novel stoichiometries containing Ag+ and Ag2+ cations (Ag3F4 and Ag2F3) are thermodynamically stable at ambient and low pressure. Both are computed to be magnetic semiconductors at ambient pressure conditions. For Ag2F5, containing both Ag2+ and Ag3+, we find that strong 1D antiferromagnetic coupling is retained throughout the pressure-induced phase transition sequence up to 65 GPa. Our calculations show that throughout the entire pressure range of their stability the mixed valence fluorides preserve a finite band gap at the Fermi level. We also confirm the possibility of synthesizing AgF4 as a paramagnetic compound at high pressure. Our results indicate that this compound is metallic in its thermodynamic stability region. Finally, we present general considerations on the thermodynamic stability of mixed valence compounds of silver at high pressure.



قيم البحث

اقرأ أيضاً

Only several compounds bearing Ag(II) cation and other transition metal cation have been known. Herein, we predict stability and crystal structures of hypothetical ternary silver(II) fluorides with copper, nickel and cobalt in 1:1 stoichiometry at pr essure range from 0 GPa up to 20 GPa within the frame of Density Functional Theory. Calculations show that AgCoF4 could be synthesized already at ambient conditions but this compound would host diamagnetic Ag(I) and high-spin Co(III). However, at increased pressure ternary fluorides of Ag(II) featuring Cu and Ni could be synthesized, in the pressure windows of 7-14 and 8-15 GPa, respectively. All title compounds would be semiconducting and magnetically ordered.
As-grown AgF2 has a remarkably similar electronic structure as insulating cuprates, but it is extremely electronegative, which makes it hard to handle and dope. Furthermore, buckling of layers reduces magnetic interactions and enhances unwanted self- trapping lattice effects. We argue that epitaxial engineering can solve all these problems. By using a high throughput approach and first principle computations, we find a set of candidate substrates which can sustain the chemical aggressiveness of AgF2 and at the same time have good lattice parameter matching for heteroepitaxy, enhancing AgF2 magnetic and transport properties and opening the possibility of field-effect carrier injection to achieve a new generation of high-Tc superconductors. Assuming a magnetic mechanism and extrapolating from cuprates we predict that the superconducting critical temperature of a single layer can reach 195 K.
We present a combined theoretical and experimental study of the high-pressure behavior of thallium. X-ray diffraction experiments have been carried out at room temperature up to 125 GPa using diamond-anvil cells, nearly doubling the pressure range of previous experiments. We have confirmed the hcp-fcc transition at 3.5 GPa and determined that the fcc structure remains stable up to the highest pressure attained in the experiments. In addition, HP-HT experiments have been performed up to 8 GPa and 700 K by using a combination of x-ray diffraction and a resistively heated diamond-anvil cell. Information on the phase boundaries is obtained, as well as crystallographic information on the HT bcc phase. The equation of state for different phases is reported. Ab initio calculations have also been carried out considering several potential high-pressure structures. They are consistent with the experimental results and predict that, among the structures considered in the calculations, the fcc structure of thallium is stable up to 4.3 TPa. Calculations also predict the post-fcc phase to have a close-packed orthorhombic structure above 4.3 TPa.
We report a high-pressure study of monoclinic monazite-type SrCrO4 up to 26 GPa. Therein we combined x-ray diffraction, Raman and optical-absorption measurements with ab initio calculations, to find a pressure-induced structural phase transition of S rCrO4 near 8-9 GPa. Evidence of a second phase transition was observed at 10-13 GPa. The crystal structures of the high-pressure phases were assigned to the tetragonal scheelite-type and monoclinic AgMnO4-type structures. Both transitions produce drastic changes in the electronic band gap and phonon spectrum of SrCrO4. We determined the pressure evolution of the band gap for the low-pressure and high-pressure phases as well as the frequencies and pressure dependences of the Raman-active modes. In all three phases most Raman modes harden under compression; however the presence of low-frequency modes which gradually soften is also detected. In monazite-type SrCrO4, the band gap blue-shifts under compression, but the transition to the scheelite phase causes an abrupt decrease of the band gap in SrCrO4. Calculations showed good agreement with experiments and were used to better understand the experimental results. From x-ray diffraction studies and calculations we determined the pressure dependence of the unit-cell parameters of the different phases and their ambient-temperature equations of state. The results are compared with the high-pressure behavior of other monazites, in particular PbCrO4. A comparison of the high-pressure behavior of the electronic properties of SrCrO4 (SrWO4) and PbCrO4 (PbWO4) will also be made. Finally, the possible occurrence of a third structural phase transition is discussed.
The structural evolution and dynamics of silver nanodrops Ag${}_{2896}$ (4.4 nm in diameter) during rapid cooling conditions has been studied by means of molecular dynamics simulations and electronic density of state calculations. The interaction of silver atoms is modeled by a tight-binding semiempirical interatomic potential proposed by Cleri and Rosato. The pair correlation functions and the pair analysis technique is applied to reveal the structural transition in the process of solidification. It is shown that Ag nanoparticles evolve into different nanostructures under different cooling processes. At a cooling rate of $1.5625times10^{13} Ks^{-1}$ the nanoparticles preserve an amorphous like structure containing a large amount of 1551 and 1541 pairs which correspond to the icosahedral symmetry. For a lower cooling rate ($1.5625times10^{12} Ks^{-1}$), the nanoparticles transform into a crystal-like structure consisting mainly of 1421 and 1422 pairs which correspond to the fcc and hcp structures, respectively. The variations of the electronic density of states for the differently cooled nanoparticles are small but in correspondence with the structural changes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا