ﻻ يوجد ملخص باللغة العربية
We have analyzed the atomic arrangements and quantum conductance of silver nanowires generated by mechanical elongation. The surface properties of Ag induce unexpected structural properties, as for example, predominance of high aspect ratio rod-like wires. The structural behavior was used to understand the Ag quantum conductance data and the proposed correlation was confirmed by means of theoretical calculations. These results emphasize that the conductance of metal point contacts is determined by the preferred atomic structures and, that atomistic descriptions are essential to interpret the quantum transport behavior of metal nanostructures.
We have studied the effect of thermal effects on the structural and transport response of Ag atomic-size nanowires generated by mechanical elongation. Our study involves both time-resolved atomic resolution transmission electron microscopy imaging an
In the framework of four-band envelope-function formalism, developed earlier for spherical semiconductor nanocrystals, we study the electronic structure and optical properties of quantum-confined lead-salt (PbSe and PbS) nanowires (NWs) with a strong
The structural evolution and dynamics of silver nanodrops Ag${}_{2896}$ (4.4 nm in diameter) during rapid cooling conditions has been studied by means of molecular dynamics simulations and electronic density of state calculations. The interaction of
The influence of local oxidation in silicon nanowires on hole transport, and hence the effect of varying the oxidation state of silicon atoms at the wire surface, is studied using density functional theory in conjunction with a Greens function scatte
We report a correlation between the spin polarization of the tunneling electrons (TSP) and the magnetic moment of amorphous CoFeB alloys. Such a correlation is surprising since the TSP involves s-like electrons close to the Fermi level (EF), while th