ﻻ يوجد ملخص باللغة العربية
We prove the analog of Kostants Theorem on Lie algebra cohomology in the context of quantum groups. We prove that Kostants cohomology formula holds for quantum groups at a generic parameter $q$, recovering an earlier result of Malikov in the case where the underlying semisimple Lie algebra $mathfrak{g} = mathfrak{sl}(n)$. We also show that Kostants formula holds when $q$ is specialized to an $ell$-th root of unity for odd $ell ge h-1$ (where $h$ is the Coxeter number of $mathfrak{g}$) when the highest weight of the coefficient module lies in the lowest alcove. This can be regarded as an extension of results of Friedlander-Parshall and Polo-Tilouine on the cohomology of Lie algebras of reductive algebraic groups in prime characteristic.
The geometric realizations of Lusztigs symmetries of symmetrizable quantum groups are given in this paper. This construction is a generalization of that in [19].
We investigate a new cohomology of Lie superalgebras, which may be compared to a de Rham cohomology of Lie supergroups involving both differential and integral forms. It is defined by a BRST complex of Lie superalgebra modules, which is formulated in
In this paper, we shall study the structure of the Grothendieck group of the category consisting of Lusztigs perverse sheaves and give a decomposition theorem of it. By using this decomposition theorem and the geometric realizations of Lusztigs symme
We construct a basis for a modified quantum group of finite type, extending the PBW bases of positive and negative halves of a quantum group. Generalizing Lusztigs classic results on PBW bases, we show that this basis is orthogonal with respect to it
$imath$quantum groups are generalizations of quantum groups which appear as coideal subalgebras of quantum groups in the theory of quantum symmetric pairs. In this paper, we define the notion of classical weight modules over an $imath$quantum group,