ﻻ يوجد ملخص باللغة العربية
We construct a basis for a modified quantum group of finite type, extending the PBW bases of positive and negative halves of a quantum group. Generalizing Lusztigs classic results on PBW bases, we show that this basis is orthogonal with respect to its natural bilinear form (and hence called a PBW basis), and moreover, the matrix for the PBW-expansion of the canonical basis is unital triangular. All these follow by a new construction of the modified quantum group of arbitrary type, which is built on limits of sequences of elements in tensor products of lowest and highest weight modules. Explicitly formulas are worked out in the rank one case.
Let $U_q(mathfrak{g})$ be a quantum affine algebra of arbitrary type and let $mathcal{C}_{mathfrak{g}}$ be Hernandez-Leclercs category. We can associate the quantum affine Schur-Weyl duality functor $F_D$ to a duality datum $D$ in $mathcal{C}_{mathfr
Let $U_q(mathfrak{g})$ be a quantum affine algebra of untwisted affine ADE type and let $mathcal{C}^0_{mathfrak{g}}$ be Hernandez-Leclercs category. For a duality datum $mathcal{D}$ in $mathcal{C}^0_{mathfrak{g}}$, we denote by $mathcal{F}_{mathcal{D
Let $textbf{U}^+$ be the positive part of the quantum group $textbf{U}$ associated with a generalized Cartan matrix. In the case of finite type, Lusztig constructed the canonical basis $textbf{B}$ of $textbf{U}^+$ via two approaches. The first one is
Let $(bf U, bf U^imath)$ be a quantum symmetric pair of Kac-Moody type. The $imath$quantum groups $bf U^imath$ and the universal $imath$quantum groups $widetilde{bf U}^imath$ can be viewed as a generalization of quantum groups and Drinfeld doubles $w
Let $(bf U, bf U^imath)$ be a quasi-split quantum symmetric pair of arbitrary Kac-Moody type, where quasi-split means the corresponding Satake diagram contains no black node. We give a presentation of the $imath$quantum group $bf U^imath$ with explic