ترغب بنشر مسار تعليمي؟ اضغط هنا

Determining Seebeck coefficient of heavily doped La:SrTiO3 from density functional calculations

106   0   0.0 ( 0 )
 نشر من قبل Rui-zhi Zhang
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A new approach is developed to calculate temperature dependent Seebeck coefficient of heavily doped systems by using Boltzmann transport theory and electron density of states (DOS) obtained from density functional calculations. This approach is applied to heavily doped La:STO with DOS from tetrahedral method and Fermi energy using Fermi integrals. The calculated Seebeck coefficient agrees with the experimental data nearly quantitatively, which proved the accuracy of this approach. The influence of the Fermi energy and asymmetry of DOS on the Seebeck coefficient is analyzed.


قيم البحث

اقرأ أيضاً

A systemically theoretical study has been presented to explored the crystal structures and electronic characteristics of polycyclic aromatic hydrocarbons (PAHs), such as solid phenanthrene, picene, 1,2;8,9-dibenzopentacene, and 7-phenacenes, since th ese PAHs exhibited the superconductivity when potassium doping into. For tripotassium-doped phenanthrene and picene, we demonstrate the K atomic positions to fit the experimental lattice parameters, and analyze the distinction between the stablest configuration and the fitted experimental one. Based on the first-principles calculations, for the first time, we predict the possible crystal configurations of pristine and tripotassium-doped 1,2;8,9-dibenzopentacene and 7-phenacenes, respectively. For these four PAHs, the electronic structures after doping are investigated in details. The results show that the electronic characters near the Fermi level are high sensitive to structure. Because of the change of the benzene rings arrangement, the 1,2;8,9-dibenzopentacene exhibits visibly different band structures from other three PAHs. In these metallic PAHs, two bands cross the Fermi level which results in the complicated multiband feature of Fermi surfaces. Fascinatingly, we find that the electronic states of potassium contribute to the Fermi surfaces especially for K-3$d$ electrons, which improves a way to understand this superconductivity. As a result, we suggest that the rigid-band picture is invalidated due to the hybridization between K atoms and PAH molecules as well as the rearrangement and distortion of PAH molecules.
112 - H. Sims 2009
We report a study of the anisotropic exchange interactions in bulk CrO_2 calculated from first principles within density functional theory. We determine the exchange coupling energies, using both the experimental lattice parameters and those obtained within DFT, within a modified Heisenberg model Hamiltonian in two ways. We employ a supercell method in which certain spins within a cell are rotated and the energy dependence is calculated and a spin-spiral method that modifies the periodic boundary conditions of the problem to allow for an overall rotation of the spins between unit cells. Using the results from each of these methods, we calculate the spin-wave stiffness constant D from the exchange energies using the magnon dispersion relation. We employ a Monte Carlo method to determine the DFT-predicted Curie temperature from these calculated energies and compare with accepted values. Finally, we offer an evaluation of the accuracy of the DFT-based methods and suggest implications of the competing ferro- and antiferromagnetic interactions.
The different crystal structures of ferromagnetic Ni$_2$MnGa have been calculated using density functional theory (DFT) with special emphasis on the modulated structures 10M and 14M. These are important for understanding the stability of Ni$_2$MnGa m artensites and their functionality as shape-memory materials. The modulated structures have been optimized in the calculations and their properties are discussed in relation to the structures without modulation. The occurrence of the modulated structures is related to the soft TA$_2$ phonon mode observed in Ni$_2$MnGa. The latter is related to the specific nesting behavior of the Fermi surface in Ni$_2$MnGa. Particular shapes of the modulated structures are stabilized by the covalent interaction mediated by the textit{p}-orbitals of Ga and textit{d}-orbitals of Ni. The role of this interaction becomes clear seen when considering the phonon dispersion spectrum of Ni$_2$MnGa, where some characteristic anomalies occur in the coupling of acoustical vibrational modes and the optical modes of Ni.
Density Functional Theory calculations are used to investigate the role of substrate-induced cooperative effects on the adsorption of water on a partially oxidized transition metal surface, O(2x2)/Ru(0001). Focussing particularly on the dimer configu ration, we analyze the different contributions to its binding energy. A significant reinforcement of the intermolecular hydrogen-bond (H-bond), also supported by the observed frequency shifts of the vibration modes, is attributed to the polarization of the donor molecule when bonded to the Ru atoms in the substrate. This result is further confirmed by our calculations for a water dimer interacting with a small Ru cluster, which clearly show that the observed effect does not depend critically on fine structural details and/or the presence of co-adsorbates. Interestingly, the cooperative reinforcement of the H-bond is suppressed when the acceptor molecule, instead of the donor, is bonded to the surface. This simple observation can be used to rationalize the relative stability of different condensed structures of water on metallic substrates.
We propose a new method for accurately calculating electrical transport properties of a lightly-doped thermoelectric material from density functional theory (DFT) calculations, based on experimental data and density functional theory results for the corresponding undoped material. We employ this approach because hybrid DFT calculations are prohibitive for the large supercells required to model low dopant concentrations comparable to those achieved experimentally for high-performing thermoelectrics. Using zinc antimonide as our base material, we find that the electrical transport properties calculated with DFT and Boltzmann transport theory exhibit the same trends with changes in chemical potential as those computed with hybrid DFT, and propose a fitting algorithm that involves adjusting the computed Fermi energy so that the resulting Seebeck coefficient trends with temperature match experimental trends. We confirm the validity of this approach in reproducing the experimental trends in electrical conductivity and Seebeck coefficient versus temperature for Bi-doped $beta-$Zn$_4$Sb$_3$. We then screen various transition metal cation dopants, including copper and nickel, and find that a Cu dopant concentration of 2.56% in Zn$_{39}$Sb$_{30}$ exhibited a 14% increase in the thermoelectric power factor for temperatures between 300-400 K. We thus propose that transition metal dopants may significantly improve the thermoelectric performance of the host material, compared to heavy and/or rare-earth dopants.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا