ترغب بنشر مسار تعليمي؟ اضغط هنا

Determining the Anisotropic Exchange Coupling of CrO_2 via First-Principles Density Functional Theory Calculations

81   0   0.0 ( 0 )
 نشر من قبل Hunter Sims
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف H. Sims




اسأل ChatGPT حول البحث

We report a study of the anisotropic exchange interactions in bulk CrO_2 calculated from first principles within density functional theory. We determine the exchange coupling energies, using both the experimental lattice parameters and those obtained within DFT, within a modified Heisenberg model Hamiltonian in two ways. We employ a supercell method in which certain spins within a cell are rotated and the energy dependence is calculated and a spin-spiral method that modifies the periodic boundary conditions of the problem to allow for an overall rotation of the spins between unit cells. Using the results from each of these methods, we calculate the spin-wave stiffness constant D from the exchange energies using the magnon dispersion relation. We employ a Monte Carlo method to determine the DFT-predicted Curie temperature from these calculated energies and compare with accepted values. Finally, we offer an evaluation of the accuracy of the DFT-based methods and suggest implications of the competing ferro- and antiferromagnetic interactions.

قيم البحث

اقرأ أيضاً

A new approach is developed to calculate temperature dependent Seebeck coefficient of heavily doped systems by using Boltzmann transport theory and electron density of states (DOS) obtained from density functional calculations. This approach is appli ed to heavily doped La:STO with DOS from tetrahedral method and Fermi energy using Fermi integrals. The calculated Seebeck coefficient agrees with the experimental data nearly quantitatively, which proved the accuracy of this approach. The influence of the Fermi energy and asymmetry of DOS on the Seebeck coefficient is analyzed.
The magnetic properties of the intermetallic compound FeAl are investigated using exact exchange density functional theory. This is implemented within a state of the art all-electron full potential method. We find that FeAl is magnetic with a moment of 0.70 $mu_B$, close to the LSDA result of 0.69 $mu_B$. A comparison with the non-magnetic density of states with experimental negative binding energy result shows a much better agreement than any previous calculations. We attribute this to the fine details of the exchange field, in particular its asymmetry, which is captured very well with the orbital dependent exchange potential.
Equilibrium polyethylene crystal structure, cohesive energy, and elastic constants are calculated by density-functional theory applied with a recently proposed density functional (vdW-DF) for general geometries [Phys. Rev. Lett. 92, 246401 (2004)] an d with a pseudopotential-planewave scheme. The vdW-DF with its account for the long-ranged van der Waals interactions gives not only a stabilized crystal structure but also values of the calculated lattice parameters and elastic constants in quite good agreement with experimental data, giving promise for successful application to a wider range of polymers.
Density functional theory (DFT) calculations are used to investigate the electronic and magnetic structures of a two-dimensional (2D) monolayer Li$_{2}$N. It is shown that bulk Li$_{3}$N is a non-magnetic semiconductor. The non-spinpolarized DFT calc ulations show that $p$ electrons of N in 2D Li$_{2}$N form a narrow band at the Fermi energy $E_{rm{F}}$ due to a low coordination number, and the density of states at the Fermi energy ($g(E_{rm{F}}$)) is increased as compared with bulk Li$_{3}$N. The large $g(E_{rm{F}}$) shows instability towards magnetism in Stoners mean field model. The spin-polarized calculations reveal that 2D Li$_{2}$N is magnetic without intrinsic or impurity defects. The magnetic moment of 1.0,$mu_{rm{B}}$ in 2D Li$_{2}$N is mainly contributed by the $p_{z}$ electrons of N, and the band structure shows half-metallic behavior. {Dynamic instability in planar Li$_{2}$N monolayer is observed, but a buckled Li$_{2}$N monolayer is found to be dynamically stable.} The ferromagnetic (FM) and antiferromagnetic (AFM) coupling between the N atoms is also investigated to access the exchange field strength. {We found that planar (buckled) 2D Li$_{2}$N is a ferromagnetic material with Curie temperature $T_{c}$ of 161 (572) K.}
66 - Gul Rahman , Saad Sarwar 2016
Using density functional theory calculations, the ground state structure of BaFeO$_3$ (BFO) is investigated with local spin density approximation (LSDA). Cubic, tetragonal, orthorhombic, and rhombohedral types BFO are considered to calculate the form ation enthalpy. The formation enthalpies reveal that cubic is the most stable structure of BFO. Small energy difference between the cubic and tetragonal suggests a possible tetragonal BFO. Ferromagnetic(FM) and anitiferromagnetic (AFM) coupling between the Fe atoms show that all the striochmetric BFO are FM. The energy difference between FM and AFM shows room temperature ferromagnetism in cubic BFO in agreement with the experimental work. The LSDA calculated electronic structures are metallic in all studied crystallographic phases of BFO. Calculations including the Hubbard potential $U,i.e.$ LSDA+$U$, show that all phases of BFO are half-metallic consistent with the integer magnetic moments. The presence of half-metallicity is discussed in terms of electronic band structures of BFO.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا