ترغب بنشر مسار تعليمي؟ اضغط هنا

Geometrical and electronic structures of tripotassium-doped hydrocarbon superconductors: Density functional calculations

84   0   0.0 ( 0 )
 نشر من قبل Guohua Zhong
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A systemically theoretical study has been presented to explored the crystal structures and electronic characteristics of polycyclic aromatic hydrocarbons (PAHs), such as solid phenanthrene, picene, 1,2;8,9-dibenzopentacene, and 7-phenacenes, since these PAHs exhibited the superconductivity when potassium doping into. For tripotassium-doped phenanthrene and picene, we demonstrate the K atomic positions to fit the experimental lattice parameters, and analyze the distinction between the stablest configuration and the fitted experimental one. Based on the first-principles calculations, for the first time, we predict the possible crystal configurations of pristine and tripotassium-doped 1,2;8,9-dibenzopentacene and 7-phenacenes, respectively. For these four PAHs, the electronic structures after doping are investigated in details. The results show that the electronic characters near the Fermi level are high sensitive to structure. Because of the change of the benzene rings arrangement, the 1,2;8,9-dibenzopentacene exhibits visibly different band structures from other three PAHs. In these metallic PAHs, two bands cross the Fermi level which results in the complicated multiband feature of Fermi surfaces. Fascinatingly, we find that the electronic states of potassium contribute to the Fermi surfaces especially for K-3$d$ electrons, which improves a way to understand this superconductivity. As a result, we suggest that the rigid-band picture is invalidated due to the hybridization between K atoms and PAH molecules as well as the rearrangement and distortion of PAH molecules.

قيم البحث

اقرأ أيضاً

We propose a new method for accurately calculating electrical transport properties of a lightly-doped thermoelectric material from density functional theory (DFT) calculations, based on experimental data and density functional theory results for the corresponding undoped material. We employ this approach because hybrid DFT calculations are prohibitive for the large supercells required to model low dopant concentrations comparable to those achieved experimentally for high-performing thermoelectrics. Using zinc antimonide as our base material, we find that the electrical transport properties calculated with DFT and Boltzmann transport theory exhibit the same trends with changes in chemical potential as those computed with hybrid DFT, and propose a fitting algorithm that involves adjusting the computed Fermi energy so that the resulting Seebeck coefficient trends with temperature match experimental trends. We confirm the validity of this approach in reproducing the experimental trends in electrical conductivity and Seebeck coefficient versus temperature for Bi-doped $beta-$Zn$_4$Sb$_3$. We then screen various transition metal cation dopants, including copper and nickel, and find that a Cu dopant concentration of 2.56% in Zn$_{39}$Sb$_{30}$ exhibited a 14% increase in the thermoelectric power factor for temperatures between 300-400 K. We thus propose that transition metal dopants may significantly improve the thermoelectric performance of the host material, compared to heavy and/or rare-earth dopants.
The different crystal structures of ferromagnetic Ni$_2$MnGa have been calculated using density functional theory (DFT) with special emphasis on the modulated structures 10M and 14M. These are important for understanding the stability of Ni$_2$MnGa m artensites and their functionality as shape-memory materials. The modulated structures have been optimized in the calculations and their properties are discussed in relation to the structures without modulation. The occurrence of the modulated structures is related to the soft TA$_2$ phonon mode observed in Ni$_2$MnGa. The latter is related to the specific nesting behavior of the Fermi surface in Ni$_2$MnGa. Particular shapes of the modulated structures are stabilized by the covalent interaction mediated by the textit{p}-orbitals of Ga and textit{d}-orbitals of Ni. The role of this interaction becomes clear seen when considering the phonon dispersion spectrum of Ni$_2$MnGa, where some characteristic anomalies occur in the coupling of acoustical vibrational modes and the optical modes of Ni.
A new approach is developed to calculate temperature dependent Seebeck coefficient of heavily doped systems by using Boltzmann transport theory and electron density of states (DOS) obtained from density functional calculations. This approach is appli ed to heavily doped La:STO with DOS from tetrahedral method and Fermi energy using Fermi integrals. The calculated Seebeck coefficient agrees with the experimental data nearly quantitatively, which proved the accuracy of this approach. The influence of the Fermi energy and asymmetry of DOS on the Seebeck coefficient is analyzed.
The electronic structure of surfaces plays a key role in the properties of quantum devices. However, surfaces are also the most challenging to simulate and engineer. Here, we study the electronic structure of InAs(001), InAs(111), and InSb(110) surfa ces using a combination of density functional theory (DFT) and angle-resolved photoemission spectroscopy (ARPES). We were able to perform large-scale first principles simulations and capture effects of different surface reconstructions by using DFT calculations with a machine-learned Hubbard U correction [npj Comput. Mater. 6, 180 (2020)]. To facilitate direct comparison with ARPES results, we implemented a bulk unfolding scheme by projecting the calculated band structure of a supercell surface slab model onto the bulk primitive cell. For all three surfaces, we find a good agreement between DFT calculations and ARPES. For InAs(001), the simulations clarify the effect of the surface reconstruction. Different reconstructions are found to produce distinctive surface states. For InAs(111) and InSb(110), the simulations help elucidate the effect of oxidation. Owing to larger charge transfer from As to O than from Sb to O, oxidation of InAs(111) leads to significant band bending and produces an electron pocket, whereas oxidation of InSb(110) does not. Our combined theoretical and experimental results may inform the design of quantum devices based on InAs and InSb semiconductors, e.g., topological qubits utilizing the Majorana zero modes.
We propose a method to decompose the total energy of a supercell containing defects into contributions of individual atoms, using the energy density formalism within density functional theory. The spatial energy density is unique up to a gauge transf ormation, and we show that unique atomic energies can be calculated by integrating over Bader and charge-neutral volumes for each atom. Numerically, we implement the energy density method in the framework of the Vienna ab initio simulation package (VASP) for both norm-conserving and ultrasoft pseudopotentials and the projector augmented wave method, and use a weighted integration algorithm to integrate the volumes. The surface energies and point defect energies can be calculated by integrating the energy density over the surface region and the defect region, respectively. We compute energies for several surfaces and defects: the (110) surface energy of GaAs, the mono-vacancy formation energies of Si, the (100) surface energy of Au, and the interstitial formation energy of O in the hexagonal close-packed Ti crystal. The surface and defect energies calculated using our method agree with size-converged calculations of the difference between the total energies of the system with and without the defect. Moreover, the convergence of the defect energies with size can be found from a single calculation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا